Injecting Text and Cross-lingual Supervision in Few-shot Learning from
Self-Supervised Models
- URL: http://arxiv.org/abs/2110.04863v1
- Date: Sun, 10 Oct 2021 17:33:44 GMT
- Title: Injecting Text and Cross-lingual Supervision in Few-shot Learning from
Self-Supervised Models
- Authors: Matthew Wiesner, Desh Raj, Sanjeev Khudanpur
- Abstract summary: We show how universal phoneset acoustic models can leverage cross-lingual supervision to improve transfer of self-supervised representations to new languages.
We also show how target-language text can be used to enable and improve fine-tuning with the lattice-free maximum mutual information objective.
- Score: 33.66135770490531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised model pre-training has recently garnered significant
interest, but relatively few efforts have explored using additional resources
in fine-tuning these models. We demonstrate how universal phoneset acoustic
models can leverage cross-lingual supervision to improve transfer of pretrained
self-supervised representations to new languages. We also show how
target-language text can be used to enable and improve fine-tuning with the
lattice-free maximum mutual information (LF-MMI) objective. In three
low-resource languages these techniques greatly improved few-shot learning
performance.
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
We introduce a novel MoE-CT architecture that separates the base model's learning from the multilingual expansion process.
Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency.
arXiv Detail & Related papers (2024-06-25T11:03:45Z) - Reduce, Reuse, Recycle: Is Perturbed Data better than Other Language augmentation for Low Resource Self-Supervised Speech Models [48.44820587495038]
Self-supervised representation learning (SSRL) has demonstrated superior performance than supervised models for tasks including phoneme recognition.
Training SSRL models poses a challenge for low-resource languages where sufficient pre-training data may not be available.
We propose to use audio augmentation techniques, namely: pitch variation, noise addition, accented target language and other language speech to pre-train SSRL models in a low resource condition and evaluate phoneme recognition.
arXiv Detail & Related papers (2023-09-22T10:09:09Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Cross-Lingual Supervision improves Large Language Models Pre-training [36.932380291416365]
We demonstrate that pre-training Large Language Models on a mixture of a self-supervised Language Modeling objective and the supervised Machine Translation objective, yields models with better in-context learning abilities.
As pre-training is a very resource-intensive process and a grid search on the best mixing ratio between the two objectives is prohibitively expensive, we propose a simple yet effective strategy to learn it during pre-training.
arXiv Detail & Related papers (2023-05-19T16:14:07Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - MergeDistill: Merging Pre-trained Language Models using Distillation [5.396915402673246]
We propose MergeDistill, a framework to merge pre-trained LMs in a way that can best leverage their assets with minimal dependencies.
We demonstrate the applicability of our framework in a practical setting by leveraging pre-existing teacher LMs and training student LMs that perform competitively with or even outperform teacher LMs trained on several orders of magnitude more data and with a fixed model capacity.
arXiv Detail & Related papers (2021-06-05T08:22:05Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Linguistic Features for Readability Assessment [0.0]
It is unknown whether augmenting deep learning models with linguistically motivated features would improve performance further.
We find that, given sufficient training data, augmenting deep learning models with linguistically motivated features does not improve state-of-the-art performance.
Our results provide preliminary evidence for the hypothesis that the state-of-the-art deep learning models represent linguistic features of the text related to readability.
arXiv Detail & Related papers (2020-05-30T22:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.