An Analysis of COVID-19 Knowledge Graph Construction and Applications
- URL: http://arxiv.org/abs/2110.04932v1
- Date: Sun, 10 Oct 2021 23:58:57 GMT
- Title: An Analysis of COVID-19 Knowledge Graph Construction and Applications
- Authors: Dominic Flocco, Bryce Palmer-Toy, Ruixiao Wang, Hongyu Zhu, Rishi
Sonthalia, Junyuan Lin, Andrea L. Bertozzi and P. Jeffrey Brantingham
- Abstract summary: We present a knowledge graph constructed from COVID-19 related tweets in the Los Angeles area.
We use natural language processing and change point analysis to extract tweet-topic, tweet-date, and event-date relations.
- Score: 7.849573720043142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction and application of knowledge graphs have seen a rapid
increase across many disciplines in recent years. Additionally, the problem of
uncovering relationships between developments in the COVID-19 pandemic and
social media behavior is of great interest to researchers hoping to curb the
spread of the disease. In this paper we present a knowledge graph constructed
from COVID-19 related tweets in the Los Angeles area, supplemented with federal
and state policy announcements and disease spread statistics. By incorporating
dates, topics, and events as entities, we construct a knowledge graph that
describes the connections between these useful information. We use natural
language processing and change point analysis to extract tweet-topic,
tweet-date, and event-date relations. Further analysis on the constructed
knowledge graph provides insight into how tweets reflect public sentiments
towards COVID-19 related topics and how changes in these sentiments correlate
with real-world events.
Related papers
- Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - Exploring a Hybrid Deep Learning Framework to Automatically Discover
Topic and Sentiment in COVID-19 Tweets [2.3940819037450987]
COVID-19 has created a major public health problem worldwide and other problems such as economic crisis, unemployment, mental distress, etc.
The pandemic is deadly in the world and involves many people not only with infection but also with problems, stress, wonder, fear, resentment, and hatred.
Twitter is a highly influential social media platform and a significant source of health-related information, news, opinion and public sentiment.
arXiv Detail & Related papers (2023-12-02T16:58:17Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Improving (Dis)agreement Detection with Inductive Social Relation
Information From Comment-Reply Interactions [49.305189190372765]
Social relation information can play an assistant role in the (dis)agreement task besides textual information.
We propose a novel method to extract such relation information from (dis)agreement data into an inductive social relation graph.
We find social relations can boost the performance of the (dis)agreement detection model, especially for the long-token comment-reply pairs.
arXiv Detail & Related papers (2023-02-08T09:09:47Z) - Extracting Feelings of People Regarding COVID-19 by Social Network
Mining [0.0]
dataset of COVID-related tweets in English language is collected.
More than two million tweets from March 23 to June 23 of 2020 are analyzed.
arXiv Detail & Related papers (2021-10-12T16:45:33Z) - ExcavatorCovid: Extracting Events and Relations from Text Corpora for
Temporal and Causal Analysis for COVID-19 [63.72766553648224]
ExcavatorCovid is a machine reading system that ingests open-source text documents.
It extracts COVID19 related events and relations between them, and builds a Temporal and Causal Analysis Graph.
arXiv Detail & Related papers (2021-05-05T01:18:46Z) - CML-COVID: A Large-Scale COVID-19 Twitter Dataset with Latent Topics,
Sentiment and Location Information [0.0]
CML-COVID is a COVID-19 Twitter data set of 19,298,967 million tweets from 5,977,653 unique individuals.
These tweets were collected between March 2020 and July 2020 using the query terms coronavirus, covid and mask related to COVID-19.
arXiv Detail & Related papers (2021-01-28T18:59:10Z) - Topic, Sentiment and Impact Analysis: COVID19 Information Seeking on
Social Media [1.6328866317851185]
This study analysed a large Spatio-temporal tweet dataset of the Australian sphere related to COVID19.
The methodology included a volume analysis, dynamic topic modelling, sentiment detection, and semantic brand score.
The obtained insights are compared with independently observed phenomena such as government reported instances.
arXiv Detail & Related papers (2020-08-28T02:03:18Z) - Psychometric Analysis and Coupling of Emotions Between State Bulletins
and Twitter in India during COVID-19 Infodemic [7.428097999824421]
COVID-19 infodemic has been spreading faster than the pandemic itself.
Since social media is the largest source of information, managing the infodemic requires mitigating of misinformation.
Twitter alone has seen a sharp 45% increase in the usage of its curated events page.
arXiv Detail & Related papers (2020-05-12T01:51:07Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
We review research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications.
For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed.
We explore several emerging topics, including meta learning, commonsense reasoning, and temporal knowledge graphs.
arXiv Detail & Related papers (2020-02-02T13:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.