A Survey of Adversarial Learning on Graphs
- URL: http://arxiv.org/abs/2003.05730v3
- Date: Tue, 5 Apr 2022 12:54:56 GMT
- Title: A Survey of Adversarial Learning on Graphs
- Authors: Liang Chen, Jintang Li, Jiaying Peng, Tao Xie, Zengxu Cao, Kun Xu,
Xiangnan He, Zibin Zheng, Bingzhe Wu
- Abstract summary: We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
- Score: 59.21341359399431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models on graphs have achieved remarkable performance in
various graph analysis tasks, e.g., node classification, link prediction, and
graph clustering. However, they expose uncertainty and unreliability against
the well-designed inputs, i.e., adversarial examples. Accordingly, a line of
studies has emerged for both attack and defense addressed in different graph
analysis tasks, leading to the arms race in graph adversarial learning. Despite
the booming works, there still lacks a unified problem definition and a
comprehensive review. To bridge this gap, we investigate and summarize the
existing works on graph adversarial learning tasks systemically. Specifically,
we survey and unify the existing works w.r.t. attack and defense in graph
analysis tasks, and give appropriate definitions and taxonomies at the same
time. Besides, we emphasize the importance of related evaluation metrics,
investigate and summarize them comprehensively. Hopefully, our works can
provide a comprehensive overview and offer insights for the relevant
researchers. Latest advances in graph adversarial learning are summarized in
our GitHub repository
https://github.com/EdisonLeeeee/Graph-Adversarial-Learning.
Related papers
- A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
This survey focuses on the most recent advancements in integrating graph learning with pre-trained language models.
We provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning.
arXiv Detail & Related papers (2022-12-17T22:05:07Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
Graph learning algorithms have attained state-of-the-art performance on many graph analysis tasks.
One reason is due to the very small number of datasets used in practice to benchmark the performance of graph learning algorithms.
We propose to generate synthetic graphs, and study the behaviour of graph learning algorithms in a controlled scenario.
arXiv Detail & Related papers (2022-04-04T10:48:32Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
We present a new generative and structured commonsense-reasoning task (and an associated dataset) of explanation graph generation for stance prediction.
Specifically, given a belief and an argument, a model has to predict whether the argument supports or counters the belief and also generate a commonsense-augmented graph that serves as non-trivial, complete, and unambiguous explanation for the predicted stance.
A significant 83% of our graphs contain external commonsense nodes with diverse structures and reasoning depths.
arXiv Detail & Related papers (2021-04-15T17:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.