Robust and Scalable SDE Learning: A Functional Perspective
- URL: http://arxiv.org/abs/2110.05167v1
- Date: Mon, 11 Oct 2021 11:36:50 GMT
- Title: Robust and Scalable SDE Learning: A Functional Perspective
- Authors: Scott Cameron, Tyron Cameron, Arnu Pretorius and Stephen Roberts
- Abstract summary: We propose an importance-sampling for probabilities of observations of SDE estimators for the purposes of learning.
The proposed method produces lower-variance estimates compared to algorithms based on SDE.
This facilitates the effective use of large-scale parallel hardware for massive decreases in time.
- Score: 5.642000444047032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic differential equations provide a rich class of flexible generative
models, capable of describing a wide range of spatio-temporal processes. A host
of recent work looks to learn data-representing SDEs, using neural networks and
other flexible function approximators. Despite these advances, learning remains
computationally expensive due to the sequential nature of SDE integrators. In
this work, we propose an importance-sampling estimator for probabilities of
observations of SDEs for the purposes of learning. Crucially, the approach we
suggest does not rely on such integrators. The proposed method produces
lower-variance gradient estimates compared to algorithms based on SDE
integrators and has the added advantage of being embarrassingly parallelizable.
This facilitates the effective use of large-scale parallel hardware for massive
decreases in computation time.
Related papers
- Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
Distributed gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning.
This paper presents the run time and staleness of distributed SGD based on delay differential equations (SDDEs) and the approximation of gradient arrivals.
It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness.
arXiv Detail & Related papers (2024-06-17T02:56:55Z) - Amortized Reparametrization: Efficient and Scalable Variational
Inference for Latent SDEs [3.2634122554914002]
We consider the problem of inferring latent differential equations with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations.
This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation.
arXiv Detail & Related papers (2023-12-16T22:27:36Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning [0.46180371154032895]
We approximate drift and diffusivity functions in effective SDE through neural networks.
Our approach does not require long trajectories, works on scattered snapshot data, and is designed to naturally handle different time steps per snapshot.
arXiv Detail & Related papers (2021-06-10T13:00:18Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
We propose a data driven approach where parameters of the SDE are represented by a neural network with a built-in SDE integration scheme.
The algorithm is applied to the geometric brownian motion and a version of the Lorenz-63 model.
arXiv Detail & Related papers (2021-05-18T11:41:34Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - The Seven-League Scheme: Deep learning for large time step Monte Carlo
simulations of stochastic differential equations [0.0]
We propose an accurate data-driven numerical scheme to solve Differential Equations (SDEs)
The SDE discretization is built up by means of a chaos expansion method on the basis of accurately determined (SC) points.
With a method called the compression-decompression and collocation technique, we can drastically reduce the number of neural network functions that have to be learned.
arXiv Detail & Related papers (2020-09-07T16:06:20Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.