Chaos as an interpretable benchmark for forecasting and data-driven
modelling
- URL: http://arxiv.org/abs/2110.05266v1
- Date: Mon, 11 Oct 2021 13:39:41 GMT
- Title: Chaos as an interpretable benchmark for forecasting and data-driven
modelling
- Authors: William Gilpin
- Abstract summary: Chaotic systems pose a unique challenge to modern statistical learning techniques.
We present a database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry.
- Score: 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The striking fractal geometry of strange attractors underscores the
generative nature of chaos: like probability distributions, chaotic systems can
be repeatedly measured to produce arbitrarily-detailed information about the
underlying attractor. Chaotic systems thus pose a unique challenge to modern
statistical learning techniques, while retaining quantifiable mathematical
properties that make them controllable and interpretable as benchmarks. Here,
we present a growing database currently comprising 131 known chaotic dynamical
systems spanning fields such as astrophysics, climatology, and biochemistry.
Each system is paired with precomputed multivariate and univariate time series.
Our dataset has comparable scale to existing static time series databases;
however, our systems can be re-integrated to produce additional datasets of
arbitrary length and granularity. Our dataset is annotated with known
mathematical properties of each system, and we perform feature analysis to
broadly categorize the diverse dynamics present across the collection. Chaotic
systems inherently challenge forecasting models, and across extensive
benchmarks we correlate forecasting performance with the degree of chaos
present. We also exploit the unique generative properties of our dataset in
several proof-of-concept experiments: surrogate transfer learning to improve
time series classification, importance sampling to accelerate model training,
and benchmarking symbolic regression algorithms.
Related papers
- Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - Neural Koopman prior for data assimilation [7.875955593012905]
We use a neural network architecture to embed dynamical systems in latent spaces.
We introduce methods that enable to train such a model for long-term continuous reconstruction.
The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques.
arXiv Detail & Related papers (2023-09-11T09:04:36Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
We study the problem of learning a representation of the state that faithfully captures its dynamics.
This is instrumental to learning the transfer operator or the generator of the system.
We show that the search for a good representation can be cast as an optimization problem over neural networks.
arXiv Detail & Related papers (2023-07-19T11:32:24Z) - Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics [6.848555909346641]
We provide an efficient framework to combine various sources of information for optimal reconstruction.
Our framework is fully textitgenerative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
arXiv Detail & Related papers (2022-12-15T15:21:28Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Detecting chaos in lineage-trees: A deep learning approach [1.536989504296526]
We describe a novel method for estimating the largest Lyapunov exponent from data, based on training Deep Learning models on synthetically generated trajectories.
Our method is unique in that it can analyze tree-shaped data, a ubiquitous topology in biological settings, and specifically in dynamics over lineages of cells or organisms.
arXiv Detail & Related papers (2021-06-08T11:11:52Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.