Detecting chaos in lineage-trees: A deep learning approach
- URL: http://arxiv.org/abs/2106.08956v1
- Date: Tue, 8 Jun 2021 11:11:52 GMT
- Title: Detecting chaos in lineage-trees: A deep learning approach
- Authors: Hagai Rappeport, Irit Levin Reisman, Naftali Tishby, Nathalie Q.
Balaban
- Abstract summary: We describe a novel method for estimating the largest Lyapunov exponent from data, based on training Deep Learning models on synthetically generated trajectories.
Our method is unique in that it can analyze tree-shaped data, a ubiquitous topology in biological settings, and specifically in dynamics over lineages of cells or organisms.
- Score: 1.536989504296526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many complex phenomena, from weather systems to heartbeat rhythm patterns,
are effectively modeled as low-dimensional dynamical systems. Such systems may
behave chaotically under certain conditions, and so the ability to detect chaos
based on empirical measurement is an important step in characterizing and
predicting these processes. Classifying a system as chaotic usually requires
estimating its largest Lyapunov exponent, which quantifies the average rate of
convergence or divergence of initially close trajectories in state space, and
for which a positive value is generally accepted as an operational definition
of chaos. Estimating the largest Lyapunov exponent from observations of a
process is especially challenging in systems affected by dynamical noise, which
is the case for many models of real-world processes, in particular models of
biological systems. We describe a novel method for estimating the largest
Lyapunov exponent from data, based on training Deep Learning models on
synthetically generated trajectories, and demonstrate that this method yields
accurate and noise-robust predictions given relatively short inputs and across
a range of different dynamical systems. Our method is unique in that it can
analyze tree-shaped data, a ubiquitous topology in biological settings, and
specifically in dynamics over lineages of cells or organisms. We also
characterize the types of input information extracted by our models for their
predictions, allowing for a deeper understanding into the different ways by
which chaos can be analyzed in different topologies.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems [49.1574468325115]
We introduce causal diffusion components that encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space.
We show how each component extracts predictive features from data and demonstrate their application on four examples.
arXiv Detail & Related papers (2024-10-01T21:14:06Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
Currently available neural network-based modeling approaches fall short when faced with data collected randomly over time and space.
In response, we developed a new method that effectively handles such randomly sampled data.
Our model integrates techniques from amortized variational inference, neural differential equations, neural point processes, and implicit neural representations to predict both the dynamics of the system and the timings and locations of future observations.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Score-based Data Assimilation [7.215767098253208]
We introduce score-based data assimilation for trajectory inference.
We learn a score-based generative model of state trajectories based on the key insight that the score of an arbitrarily long trajectory can be decomposed into a series of scores over short segments.
arXiv Detail & Related papers (2023-06-18T14:22:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.