Point Cloud Augmentation with Weighted Local Transformations
- URL: http://arxiv.org/abs/2110.05379v1
- Date: Mon, 11 Oct 2021 16:11:26 GMT
- Title: Point Cloud Augmentation with Weighted Local Transformations
- Authors: Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee, Seong Jae Hwang,
Hyunwoo J. Kim
- Abstract summary: We propose a simple and effective augmentation method called PointWOLF for point cloud augmentation.
The proposed method produces smoothly varying non-rigid deformations by locally weighted transformations centered at multiple anchor points.
AugTune generates augmented samples of desired difficulties producing targeted confidence scores.
- Score: 14.644850090688406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the extensive usage of point clouds in 3D vision, relatively limited
data are available for training deep neural networks. Although data
augmentation is a standard approach to compensate for the scarcity of data, it
has been less explored in the point cloud literature. In this paper, we propose
a simple and effective augmentation method called PointWOLF for point cloud
augmentation. The proposed method produces smoothly varying non-rigid
deformations by locally weighted transformations centered at multiple anchor
points. The smooth deformations allow diverse and realistic augmentations.
Furthermore, in order to minimize the manual efforts to search the optimal
hyperparameters for augmentation, we present AugTune, which generates augmented
samples of desired difficulties producing targeted confidence scores. Our
experiments show our framework consistently improves the performance for both
shape classification and part segmentation tasks. Particularly, with
PointNet++, PointWOLF achieves the state-of-the-art 89.7 accuracy on shape
classification with the real-world ScanObjectNN dataset.
Related papers
- Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) is a standard PT model augmented by an adaptive token selection mechanism.
AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds.
arXiv Detail & Related papers (2024-01-26T13:24:45Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
Data augmentation is a powerful technique to enhance the performance of a deep learning task.
This work explores test-time augmentation (TTA) for 3D point clouds.
arXiv Detail & Related papers (2023-11-22T04:31:09Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
We propose a novel two-stage framework for the efficient 3D point cloud object detection.
We parse the raw point cloud data directly in the 3D space yet achieve impressive efficiency and accuracy.
We highlight our KITTI 3D object detection dataset with 75 FPS and on Open dataset with 25 FPS inference speed with satisfactory accuracy.
arXiv Detail & Related papers (2021-07-27T10:07:39Z) - Learning Rotation-Invariant Representations of Point Clouds Using
Aligned Edge Convolutional Neural Networks [29.3830445533532]
Point cloud analysis is an area of increasing interest due to the development of 3D sensors that are able to rapidly measure the depth of scenes accurately.
Applying deep learning techniques to perform point cloud analysis is non-trivial due to the inability of these methods to generalize to unseen rotations.
To address this limitation, one usually has to augment the training data, which can lead to extra computation and require larger model complexity.
This paper proposes a new neural network called the Aligned Edge Convolutional Neural Network (AECNN) that learns a feature representation of point clouds relative to Local Reference Frames (LRFs)
arXiv Detail & Related papers (2021-01-02T17:36:00Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.