TSK Fuzzy System Towards Few Labeled Incomplete Multi-View Data
Classification
- URL: http://arxiv.org/abs/2110.05610v1
- Date: Fri, 8 Oct 2021 11:41:06 GMT
- Title: TSK Fuzzy System Towards Few Labeled Incomplete Multi-View Data
Classification
- Authors: Wei Zhang, Zhaohong Deng, Qiongdan Lou, Te Zhang, Kup-Sze Choi,
Shitong Wang
- Abstract summary: A transductive semi-supervised incomplete multi-view TSK fuzzy system modeling method (SSIMV_TSK) is proposed to address these challenges.
The proposed method integrates missing view imputation, pseudo label learning of unlabeled data, and fuzzy system modeling into a single process to yield a model with interpretable fuzzy rules.
Experimental results on real datasets show that the proposed method significantly outperforms the state-of-the-art methods.
- Score: 24.01191516774655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data collected by multiple methods or from multiple sources is called
multi-view data. To make full use of the multi-view data, multi-view learning
plays an increasingly important role. Traditional multi-view learning methods
rely on a large number of labeled and completed multi-view data. However, it is
expensive and time-consuming to obtain a large number of labeled multi-view
data in real-world applications. Moreover, multi-view data is often incomplete
because of data collection failures, self-deficiency, or other reasons.
Therefore, we may have to face the problem of fewer labeled and incomplete
multi-view data in real application scenarios. In this paper, a transductive
semi-supervised incomplete multi-view TSK fuzzy system modeling method
(SSIMV_TSK) is proposed to address these challenges. First, in order to
alleviate the dependency on labeled data and keep the model interpretable, the
proposed method integrates missing view imputation, pseudo label learning of
unlabeled data, and fuzzy system modeling into a single process to yield a
model with interpretable fuzzy rules. Then, two new mechanisms, i.e. the
bidirectional structural preservation of instance and label, as well as the
adaptive multiple alignment collaborative learning, are proposed to improve the
robustness of the model. The proposed method has the following distinctive
characteristics: 1) it can deal with the incomplete and few labeled multi-view
data simultaneously; 2) it integrates the missing view imputation and model
learning as a single process, which is more efficient than the traditional
two-step strategy; 3) attributed to the interpretable fuzzy inference rules,
this method is more interpretable. Experimental results on real datasets show
that the proposed method significantly outperforms the state-of-the-art
methods.
Related papers
- Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - Multi-view Fuzzy Representation Learning with Rules based Model [25.997490574254172]
Unsupervised multi-view representation learning has been extensively studied for mining multi-view data.
This paper proposes a new multi-view fuzzy representation learning method based on the interpretable Takagi-Sugeno-Kang fuzzy system (MVRL_FS)
arXiv Detail & Related papers (2023-09-20T17:13:15Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
In this paper, we propose an incomplete multi-view partial multi-label classification network named RANK.
We break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample.
Our model is not only able to handle complete multi-view multi-label datasets, but also works on datasets with missing instances and labels.
arXiv Detail & Related papers (2023-03-30T03:09:25Z) - DICNet: Deep Instance-Level Contrastive Network for Double Incomplete
Multi-View Multi-Label Classification [20.892833511657166]
Multi-view multi-label data in the real world is commonly incomplete due to the uncertain factors of data collection and manual annotation.
We propose a deep instance-level contrastive network, namely DICNet, to deal with the double incomplete multi-view multi-label classification problem.
Our DICNet is adept in capturing consistent discriminative representations of multi-view multi-label data and avoiding the negative effects of missing views and missing labels.
arXiv Detail & Related papers (2023-03-15T04:24:01Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Uncorrelated Semi-paired Subspace Learning [7.20500993803316]
We propose a generalized uncorrelated multi-view subspace learning framework.
To showcase the flexibility of the framework, we instantiate five new semi-paired models for both unsupervised and semi-supervised learning.
Our proposed models perform competitively to or better than the baselines.
arXiv Detail & Related papers (2020-11-22T22:14:20Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.