Multi-view Fuzzy Representation Learning with Rules based Model
- URL: http://arxiv.org/abs/2309.11473v1
- Date: Wed, 20 Sep 2023 17:13:15 GMT
- Title: Multi-view Fuzzy Representation Learning with Rules based Model
- Authors: Wei Zhang, Zhaohong Deng, Te Zhang, Kup-Sze Choi, Shitong Wang
- Abstract summary: Unsupervised multi-view representation learning has been extensively studied for mining multi-view data.
This paper proposes a new multi-view fuzzy representation learning method based on the interpretable Takagi-Sugeno-Kang fuzzy system (MVRL_FS)
- Score: 25.997490574254172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised multi-view representation learning has been extensively studied
for mining multi-view data. However, some critical challenges remain. On the
one hand, the existing methods cannot explore multi-view data comprehensively
since they usually learn a common representation between views, given that
multi-view data contains both the common information between views and the
specific information within each view. On the other hand, to mine the nonlinear
relationship between data, kernel or neural network methods are commonly used
for multi-view representation learning. However, these methods are lacking in
interpretability. To this end, this paper proposes a new multi-view fuzzy
representation learning method based on the interpretable Takagi-Sugeno-Kang
(TSK) fuzzy system (MVRL_FS). The method realizes multi-view representation
learning from two aspects. First, multi-view data are transformed into a
high-dimensional fuzzy feature space, while the common information between
views and specific information of each view are explored simultaneously.
Second, a new regularization method based on L_(2,1)-norm regression is
proposed to mine the consistency information between views, while the geometric
structure of the data is preserved through the Laplacian graph. Finally,
extensive experiments on many benchmark multi-view datasets are conducted to
validate the superiority of the proposed method.
Related papers
- Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Dual Representation Learning for One-Step Clustering of Multi-View Data [30.131568561100817]
We propose a novel one-step multi-view clustering method by exploiting the dual representation of both the common and specific information of different views.
With this framework, the representation learning and clustering partition mutually benefit each other, which effectively improve the clustering performance.
arXiv Detail & Related papers (2022-08-30T14:20:26Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - TSK Fuzzy System Towards Few Labeled Incomplete Multi-View Data
Classification [24.01191516774655]
A transductive semi-supervised incomplete multi-view TSK fuzzy system modeling method (SSIMV_TSK) is proposed to address these challenges.
The proposed method integrates missing view imputation, pseudo label learning of unlabeled data, and fuzzy system modeling into a single process to yield a model with interpretable fuzzy rules.
Experimental results on real datasets show that the proposed method significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-08T11:41:06Z) - V3H: View Variation and View Heredity for Incomplete Multi-view
Clustering [65.29597317608844]
Incomplete multi-view clustering is an effective method to integrate these incomplete views.
We propose a novel View Variation and View Heredity approach (V3H) to overcome this limitation.
V3H presents possibly the first work to introduce genetics to clustering algorithms for learning simultaneously the consistent information and the unique information from incomplete multi-view data.
arXiv Detail & Related papers (2020-11-23T03:24:48Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
We propose a novel multi-view learning framework to make the multi-view classification better aimed at the above-mentioned two aspects.
In particular, we train different deep neural networks to learn various intra-view representations.
Experiments on six publicly available datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-07-13T01:13:23Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.