論文の概要: Doubly-Trained Adversarial Data Augmentation for Neural Machine
Translation
- arxiv url: http://arxiv.org/abs/2110.05691v1
- Date: Tue, 12 Oct 2021 02:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-13 13:37:48.523642
- Title: Doubly-Trained Adversarial Data Augmentation for Neural Machine
Translation
- Title(参考訳): ニューラルマシン翻訳のための二重学習逆データ拡張
- Authors: Weiting Tan, Shuoyang Ding, Huda Khayrallah, Philipp Koehn
- Abstract要約: 我々は、モデルに攻撃を与え、ソース側の意味を保存できる敵の強化サンプルを生成する。
実験の結果,これらの逆方向のサンプルはモデルの堅牢性を向上させることがわかった。
- 参考スコア(独自算出の注目度): 8.822338727711715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Machine Translation (NMT) models are known to suffer from noisy
inputs. To make models robust, we generate adversarial augmentation samples
that attack the model and preserve the source-side semantic meaning at the same
time. To generate such samples, we propose a doubly-trained architecture that
pairs two NMT models of opposite translation directions with a joint loss
function, which combines the target-side attack and the source-side semantic
similarity constraint. The results from our experiments across three different
language pairs and two evaluation metrics show that these adversarial samples
improve the model robustness.
- Abstract(参考訳): ニューラルマシン翻訳(nmt)モデルはノイズの入力に苦しむことが知られている。
モデルを堅牢化するために、モデルを攻撃し、ソース側の意味的意味を同時に保持する対向的な拡張サンプルを生成する。
このようなサンプルを生成するために,2つの逆変換方向のnmtモデルと,ターゲット側攻撃とソース側意味的類似性制約を組み合わせたジョイント損失関数を組み合わせる二重学習アーキテクチャを提案する。
3つの異なる言語対と2つの評価指標による実験の結果、これらの対立サンプルがモデルロバスト性を向上させることが示された。
関連論文リスト
- Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - A Relaxed Optimization Approach for Adversarial Attacks against Neural
Machine Translation Models [44.04452616807661]
本稿では,ニューラルネットワーク翻訳(NMT)モデルに対する最適化に基づく逆攻撃を提案する。
実験の結果,NMTモデルの翻訳品質は有意に低下した。
我々の攻撃は、成功率、類似性保存、翻訳品質への影響、トークンエラー率の点で、ベースラインを上回っている。
論文 参考訳(メタデータ) (2023-06-14T13:13:34Z) - TransFool: An Adversarial Attack against Neural Machine Translation
Models [49.50163349643615]
敵攻撃に対するニューラルネットワーク翻訳(NMT)モデルの脆弱性を調査し,TransFoolと呼ばれる新たな攻撃アルゴリズムを提案する。
クリーンなサンプルと高いレベルのセマンティックな類似性を保ったソースコード言語で、流動的な逆の例を生成する。
自動的および人的評価に基づいて、TransFoolは、既存の攻撃と比較して成功率、意味的類似性、流布率の改善につながる。
論文 参考訳(メタデータ) (2023-02-02T08:35:34Z) - Generating Authentic Adversarial Examples beyond Meaning-preserving with
Doubly Round-trip Translation [64.16077929617119]
二重ラウンド・トリップ翻訳(DRTT)に基づくNMT逆例の新しい基準を提案する。
NMTモデルの堅牢性を高めるため,両言語対を構築するためのマスキング言語モデルを提案する。
論文 参考訳(メタデータ) (2022-04-19T06:15:27Z) - Bridging the Data Gap between Training and Inference for Unsupervised
Neural Machine Translation [49.916963624249355]
UNMTモデルは、翻訳されたソースと推論中の自然言語で擬似並列データに基づいて訓練される。
トレーニングと推論のソース差はUNMTモデルの翻訳性能を妨げている。
本稿では、擬似並列データ自然言語を同時に用いたオンライン自己学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T04:50:27Z) - BOSS: Bidirectional One-Shot Synthesis of Adversarial Examples [8.359029046999233]
本稿では,逆数例のワンショット合成を提案する。
入力はスクラッチから合成され、事前訓練されたモデルの出力で任意のソフト予測を誘導する。
本稿では,本フレームワークの汎用性と汎用性を示す。
論文 参考訳(メタデータ) (2021-08-05T17:43:36Z) - Beyond Noise: Mitigating the Impact of Fine-grained Semantic Divergences
on Neural Machine Translation [14.645468999921961]
本研究は,トランスフォーマーモデルにおける様々な種類の細粒度セマンティックな違いの影響を解析する。
自然に発生する発散による劣化からNMTが回復するのに役立つ因子を用いた発散型NMTフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-31T16:15:35Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Detecting Word Sense Disambiguation Biases in Machine Translation for
Model-Agnostic Adversarial Attacks [84.61578555312288]
本稿では,統計的データ特性に基づく曖昧な誤りの予測手法を提案する。
我々は,曖昧な誤りを生じさせるため,文の摂動を最小限に抑える,単純な敵攻撃戦略を開発する。
以上の結果から,曖昧さの堅牢性はドメイン間で大きく異なり,同一データ上でトレーニングされた異なるモデルが異なる攻撃に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2020-11-03T17:01:44Z) - Evaluating Neural Machine Comprehension Model Robustness to Noisy Inputs
and Adversarial Attacks [9.36331571226256]
我々は,文字,単語,文レベルで新しい摂動を実行することで,機械理解モデルによる雑音や敵対攻撃に対する頑健さを評価する。
敵攻撃時のモデル誤差を予測するモデルを開発した。
論文 参考訳(メタデータ) (2020-05-01T03:05:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。