Nearly optimal quantum algorithm for generating the ground state of a
free quantum field theory
- URL: http://arxiv.org/abs/2110.05708v2
- Date: Wed, 29 Jun 2022 19:08:24 GMT
- Title: Nearly optimal quantum algorithm for generating the ground state of a
free quantum field theory
- Authors: Mohsen Bagherimehrab, Yuval R. Sanders, Dominic W. Berry, Gavin K.
Brennen, Barry C. Sanders
- Abstract summary: We devise a quasilinear quantum algorithm for generating an approximation for the ground state of a quantum field theory.
Our algorithm delivers a super-quadratic speedup over the state-of-the-art quantum algorithm for ground-state generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We devise a quasilinear quantum algorithm for generating an approximation for
the ground state of a quantum field theory (QFT). Our quantum algorithm
delivers a super-quadratic speedup over the state-of-the-art quantum algorithm
for ground-state generation, overcomes the ground-state-generation bottleneck
of the prior approach and is optimal up to a polylogarithmic factor.
Specifically, we establish two quantum algorithms -- Fourier-based and
wavelet-based -- to generate the ground state of a free massive scalar bosonic
QFT with gate complexity quasilinear in the number of discretized-QFT modes.
The Fourier-based algorithm is limited to translationally invariant QFTs.
Numerical simulations show that the wavelet-based algorithm successfully yields
the ground state for a QFT with broken translational invariance. Furthermore,
the cost of preparing particle excitations in the wavelet approach is
independent of the energy scale. Our algorithms require a routine for
generating one-dimensional Gaussian (1DG) states. We replace the standard
method for 1DG-state generation, which requires the quantum computer to perform
lots of costly arithmetic, with a novel method based on inequality testing that
significantly reduces the need for arithmetic. Our method for 1DG-state
generation is generic and could be extended to preparing states whose
amplitudes can be computed on the fly by a quantum computer.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - T-Count Optimizing Genetic Algorithm for Quantum State Preparation [0.05999777817331316]
We present and utilize a genetic algorithm for state preparation circuits consisting of gates from the Clifford + T gate set.
Our algorithm does automatically generate fault tolerantly implementable solutions where the number of the most error prone components is reduced.
arXiv Detail & Related papers (2024-06-06T12:26:14Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Variational quantum iterative power algorithms for global optimization [2.526320329485241]
We introduce a family of variational quantum algorithms called quantum iterative power algorithms (QIPA)
QIPA outperforms existing hybrid near-term quantum algorithms of the same kind.
We anticipate large-scale implementation and adoption of the proposed algorithm across current major quantum hardware.
arXiv Detail & Related papers (2022-08-22T17:45:14Z) - Ground state preparation and energy estimation on early fault-tolerant
quantum computers via quantum eigenvalue transformation of unitary matrices [3.1952399274829775]
We develop a tool called quantum eigenvalue transformation of unitary matrices with reals (QET-U)
This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy.
We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model.
arXiv Detail & Related papers (2022-04-12T17:11:40Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.