Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications
- URL: http://arxiv.org/abs/2403.14655v1
- Date: Mon, 26 Feb 2024 09:32:07 GMT
- Title: Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications
- Authors: Anna Bernasconi, Alessandro Berti, Gianna M. Del Corso, Riccardo Guidotti, Alessandro Poggiali,
- Abstract summary: Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
- Score: 80.04533958880862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing sets the foundation for new ways of designing algorithms, thanks to the peculiar properties inherited by quantum mechanics. The exploration of this new paradigm faces new challenges concerning which field quantum speedup can be achieved. Towards finding solutions, looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms. Herewith, we delve into a grounding subroutine, the computation of the variance, whose usefulness spaces across different fields of application, particularly the Artificial Intelligence (AI) one. Indeed, the finding of the quantum counterpart of these building blocks impacts vertically those algorithms that leverage this metric. In this work, we propose QVAR, a quantum subroutine, to compute the variance that exhibits a logarithmic complexity both in the circuit depth and width, excluding the state preparation cost. With the vision of showing the use of QVAR as a subroutine for new quantum algorithms, we tackle two tasks from the AI domain: Feature Selection and Outlier Detection. In particular, we showcase two AI hybrid quantum algorithms that leverage QVAR: the Hybrid Quantum Feature Selection (HQFS) algorithm and the Quantum Outlier Detection Algorithm (QODA). In this manuscript, we describe the implementation of QVAR, HQFS, and QODA, providing their correctness and complexities and showing the effectiveness of these hybrid quantum algorithms with respect to their classical counterpart.
Related papers
- QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
We introduce QCircuitNet, the first benchmark and test dataset designed to evaluate AI's capability in designing and implementing quantum algorithms.
Unlike using AI for writing traditional codes, this task is fundamentally different and significantly more complicated due to highly flexible design space and intricate manipulation of qubits.
arXiv Detail & Related papers (2024-10-10T14:24:30Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum vs classical genetic algorithms: A numerical comparison shows
faster convergence [0.0]
We show that some quantum variants outperform all classical ones in convergence speed towards a near-to-optimal result.
If this advantage holds for larger systems, quantum genetic algorithms would provide a new tool to address optimization problems with quantum computers.
arXiv Detail & Related papers (2022-07-19T13:07:44Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Variational quantum compiling with double Q-learning [0.37798600249187286]
We propose a variational quantum compiling (VQC) algorithm based on reinforcement learning (RL)
An agent is trained to sequentially select quantum gates from the native gate alphabet and the qubits they act on by double Q-learning.
It can reduce the errors of quantum algorithms due to decoherence process and gate noise in NISQ devices.
arXiv Detail & Related papers (2021-03-22T06:46:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.