SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring
- URL: http://arxiv.org/abs/2110.05803v1
- Date: Tue, 12 Oct 2021 07:58:10 GMT
- Title: SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring
- Authors: Wenbin Zou, Mingchao Jiang, Yunchen Zhang, Liang Chen, Zhiyong Lu, Yi
Wu
- Abstract summary: Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
- Score: 23.86692375792203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image deblurring is a classical computer vision problem that aims to recover
a sharp image from a blurred image. To solve this problem, existing methods
apply the Encode-Decode architecture to design the complex networks to make a
good performance. However, most of these methods use repeated up-sampling and
down-sampling structures to expand the receptive field, which results in
texture information loss during the sampling process and some of them design
the multiple stages that lead to difficulties with convergence. Therefore, our
model uses dilated convolution to enable the obtainment of the large receptive
field with high spatial resolution. Through making full use of the different
receptive fields, our method can achieve better performance. On this basis, we
reduce the number of up-sampling and down-sampling and design a simple network
structure. Besides, we propose a novel module using the wavelet transform,
which effectively helps the network to recover clear high-frequency texture
details. Qualitative and quantitative evaluations of real and synthetic
datasets show that our deblurring method is comparable to existing algorithms
in terms of performance with much lower training requirements. The source code
and pre-trained models are available at https://github.com/FlyEgle/SDWNet.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images.
convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain.
We propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase.
arXiv Detail & Related papers (2022-09-16T13:56:09Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Leveraging Image Complexity in Macro-Level Neural Network Design for
Medical Image Segmentation [3.974175960216864]
We show that image complexity can be used as a guideline in choosing what is best for a given dataset.
For high-complexity datasets, a shallow network running on the original images may yield better segmentation results than a deep network running on downsampled images.
arXiv Detail & Related papers (2021-12-21T09:49:47Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.