論文の概要: Real Image Inversion via Segments
- arxiv url: http://arxiv.org/abs/2110.06269v1
- Date: Tue, 12 Oct 2021 18:37:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 08:55:29.747864
- Title: Real Image Inversion via Segments
- Title(参考訳): セグメントによる実画像インバージョン
- Authors: David Futschik, Michal Luk\'a\v{c}, Eli Shechtman, Daniel S\'ykora
- Abstract要約: 我々は,GAN(Generative Adversarial Network)を用いて,実画像の編集をシンプルかつ効果的に行う方法を提案する。
従来の手法とは異なり、すべての編集タスクを、我々のアプローチでは画像全体のピクセル値に影響を与える操作として扱うことで、画像を小さなセグメントに分割する。
生成ネットワークの潜在符号に対応するセグメントについては、制約数が少ないため、より高精度に推定することができる。
- 参考スコア(独自算出の注目度): 22.52517107482758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this short report, we present a simple, yet effective approach to editing
real images via generative adversarial networks (GAN). Unlike previous
techniques, that treat all editing tasks as an operation that affects pixel
values in the entire image in our approach we cut up the image into a set of
smaller segments. For those segments corresponding latent codes of a generative
network can be estimated with greater accuracy due to the lower number of
constraints. When codes are altered by the user the content in the image is
manipulated locally while the rest of it remains unaffected. Thanks to this
property the final edited image better retains the original structures and thus
helps to preserve natural look.
- Abstract(参考訳): 本稿では,GAN(Generative Adversarial Network)を用いて,実画像の編集をシンプルかつ効果的に行う手法を提案する。
従来の手法とは異なり、すべての編集タスクを、我々のアプローチでは画像全体のピクセル値に影響を与える操作として扱うことで、画像を小さなセグメントに分割する。
生成ネットワークの潜在符号に対応するセグメントについては、制約の少ないため、高い精度で推定することができる。
ユーザがコードを変更すると、画像内のコンテンツはローカルに操作され、残りの部分は影響を受けない。
この特性により、最終的な編集された画像は元の構造をよりよく保持し、自然の外観を維持するのに役立つ。
関連論文リスト
- FastDrag: Manipulate Anything in One Step [20.494157877241665]
本稿では,FastDragというワンステップのドラッグベースの画像編集手法を導入し,編集プロセスの高速化を図る。
この革新は1段階の遅延セマンティック最適化を実現し、編集速度を大幅に向上させる。
私たちのFastDragはDragBenchデータセットで検証されています。
論文 参考訳(メタデータ) (2024-05-24T17:59:26Z) - Gradient Adjusting Networks for Domain Inversion [82.72289618025084]
StyleGAN2はセマンティック編集をサポートする強力な画像生成エンジンであることが実証された。
本稿では,画像毎の最適化手法を提案する。この手法は,生成元の重みを局所的に編集できるように,StyleGAN2ジェネレータをチューニングする。
我々の実験は、この非常にアクティブな領域における最先端技術よりも大きなパフォーマンス差を示している。
論文 参考訳(メタデータ) (2023-02-22T14:47:57Z) - Temporally Consistent Semantic Video Editing [44.50322018842475]
本稿では、時間的コヒーレントなビデオ編集を容易にするための、シンプルで効果的な方法を提案する。
我々の中核となる考え方は、潜在コードと事前学習されたジェネレータの両方を最適化することで、時間的測光の不整合を最小限にすることである。
論文 参考訳(メタデータ) (2022-06-21T17:59:59Z) - FlexIT: Towards Flexible Semantic Image Translation [59.09398209706869]
我々は,任意の入力画像とユーザが定義したテキストを編集するための新しい方法であるFlexITを提案する。
まず、FlexITは入力画像とテキストをCLIPマルチモーダル埋め込み空間内の単一のターゲットポイントに結合する。
我々は、入力画像を目標点に向けて反復的に変換し、新しい正規化用語で一貫性と品質を確保する。
論文 参考訳(メタデータ) (2022-03-09T13:34:38Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGANは高品質で高精度なセマンティック画像編集のための新しい手法である。
EditGANは前例のない細部と自由度で画像を操作可能であることを示す。
また、複数の編集を組み合わせることも簡単で、EditGANのトレーニングデータ以外の編集も可能になります。
論文 参考訳(メタデータ) (2021-11-04T22:36:33Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
コントロール可能なセマンティックイメージ編集により、ユーザーはクリック数回で画像属性全体を変更できる。
現在のアプローチでは、絡み合った属性編集、グローバルなイメージアイデンティティの変更、フォトリアリズムの低下に悩まされることが多い。
本稿では,主に定性評価に焦点を当てた先行研究とは異なり,制御可能な編集性能を測定するための定量的評価手法を提案する。
論文 参考訳(メタデータ) (2021-02-01T21:38:36Z) - Semantic Image Manipulation Using Scene Graphs [105.03614132953285]
本稿では,星座変更や画像編集を直接監督する必要のないシーングラフネットワークを提案する。
これにより、追加のアノテーションを使わずに、既存の実世界のデータセットからシステムをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-04-07T20:02:49Z) - In-Domain GAN Inversion for Real Image Editing [56.924323432048304]
トレーニング済みのGANジェネレータに実際のイメージを送出する一般的な方法は、遅延コードに戻すことである。
既存の反転法は、通常、画素値によってターゲット画像の再構成にフォーカスするが、反転したコードは元の潜伏空間のセマンティックドメインに着陸しない。
本稿では、入力画像を忠実に再構成し、変換されたコードが編集に意味のある意味を持つようにするためのドメイン内GAN逆変換手法を提案する。
論文 参考訳(メタデータ) (2020-03-31T18:20:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。