論文の概要: Winning the ICCV'2021 VALUE Challenge: Task-aware Ensemble and Transfer
Learning with Visual Concepts
- arxiv url: http://arxiv.org/abs/2110.06476v1
- Date: Wed, 13 Oct 2021 03:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-15 01:50:56.333117
- Title: Winning the ICCV'2021 VALUE Challenge: Task-aware Ensemble and Transfer
Learning with Visual Concepts
- Title(参考訳): ICCV'2021 VALUEチャレンジに勝つ: 視覚概念によるタスク認識のアンサンブルと伝達学習
- Authors: Minchul Shin, Jonghwan Mun, Kyoung-Woon On, Woo-Young Kang, Gunsoo
Han, Eun-Sol Kim
- Abstract要約: VALUE(Video-And-Language Understanding Evaluation)ベンチマークが新たに導入され,マルチモーダル表現学習アルゴリズムの評価と解析が行われている。
VALUEの課題の主な目的は、異なる特徴を持つ様々なタスクに同時に適用可能なタスクに依存しないモデルをトレーニングすることである。
本稿では,1)単一モデル最適化,2)視覚概念を用いた伝達学習,3)タスク認識アンサンブルについて述べる。
- 参考スコア(独自算出の注目度): 20.412239939287886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The VALUE (Video-And-Language Understanding Evaluation) benchmark is newly
introduced to evaluate and analyze multi-modal representation learning
algorithms on three video-and-language tasks: Retrieval, QA, and Captioning.
The main objective of the VALUE challenge is to train a task-agnostic model
that is simultaneously applicable for various tasks with different
characteristics. This technical report describes our winning strategies for the
VALUE challenge: 1) single model optimization, 2) transfer learning with visual
concepts, and 3) task-aware ensemble. The first and third strategies are
designed to address heterogeneous characteristics of each task, and the second
one is to leverage rich and fine-grained visual information. We provide a
detailed and comprehensive analysis with extensive experimental results. Based
on our approach, we ranked first place on the VALUE and QA phases for the
competition.
- Abstract(参考訳): VALUE(Video-And-Language Understanding Evaluation)ベンチマークが新たに導入され、3つのビデオ・言語タスク(Retrieval, QA, Captioning)でマルチモーダル表現学習アルゴリズムの評価と解析が行われた。
VALUEの課題の主な目的は、異なる特徴を持つ様々なタスクに同時に適用可能なタスクに依存しないモデルをトレーニングすることである。
この技術レポートでは、VALUEチャレンジの勝利戦略について述べています。
1)単一モデル最適化。
2)視覚概念を用いた転校学習,及び
3)タスク対応アンサンブル。
第1と第3の戦略は各タスクの異種特性に対処するために設計されており、第2の戦略はリッチできめ細かい視覚情報を活用することである。
実験結果の詳細な分析と総合的な分析を行う。
当社のアプローチに基づいて、競争のVALUEとQAフェーズで1位にランク付けしました。
関連論文リスト
- QuIIL at T3 challenge: Towards Automation in Life-Saving Intervention Procedures from First-Person View [2.3982875575861677]
そこで我々は,Trauma THOMPSON (T3) Challengeにおける省力化介入手順における,多種多様な自動化タスクに対する解決策を提案する。
動作認識と予測のために,複数の入力を1つの画像にサンプリング・縫合する前処理戦略を提案する。
トレーニングのために,アクション辞書誘導型設計を提案する。
論文 参考訳(メタデータ) (2024-07-18T06:55:26Z) - Affective Behavior Analysis using Task-adaptive and AU-assisted Graph Network [18.304164382834617]
本稿では,第7回ABAW7コンペティションにおけるマルチタスク学習課題に対する解決策と実験結果について述べる。
この課題は、アクション単位の検出、表情認識、および原子価-覚醒推定の3つのタスクから構成される。
論文 参考訳(メタデータ) (2024-07-16T12:33:22Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
文脈対応感情認識(CAER)は、様々な文脈から感情を知覚する必要がある複雑で重要なタスクである。
以前のアプローチは主に、イメージから感情的な手がかりを抽出する洗練されたアーキテクチャを設計することに焦点を当てていた。
本稿では,LVLM(Large Vision-Language Models)を活用したCAERタスクの実現の可能性について,体系的に検討する。
論文 参考訳(メタデータ) (2024-07-16T01:28:06Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Visual Instruction Tuning towards General-Purpose Multimodal Model: A
Survey [59.95153883166705]
従来のコンピュータビジョンは、モデルアーキテクチャで暗黙的に設計されたタスク命令を持つ専用モデルによって、個々のタスクを独立して解決する。
近年,視覚インストラクション・チューニング (VIT) の研究が盛んに行われている。
本研究の目的は,(1)コンピュータビジョンタスクのパラダイムとVIT開発を提示する背景,(2)一般的に使用されるネットワークアーキテクチャ,視覚的命令チューニングフレームワークと目的を導入したVITの基礎,および,設定とタスクの評価,(3)視覚的命令チューニングと評価において一般的に使用されるデータセットの体系的レビューを提供することである。
論文 参考訳(メタデータ) (2023-12-27T14:54:37Z) - Multitask Multimodal Prompted Training for Interactive Embodied Task
Completion [48.69347134411864]
Embodied MultiModal Agent (EMMA) はエンコーダとデコーダの統一モデルである。
すべてのタスクをテキスト生成として統一することで、EMMAはタスク間の転送を容易にするアクション言語を学ぶ。
論文 参考訳(メタデータ) (2023-11-07T15:27:52Z) - Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
メタラーニングは、限られたデータから行われる多様なトレーニングタスクで一般的な知識を学び、それを新しいタスクに転送することを目的としている。
タスク多様性の増大はメタラーニングモデルの一般化能力を高めると一般的に信じられている。
本稿では、経験的および理論的分析を通して、この見解に挑戦する。
論文 参考訳(メタデータ) (2023-07-18T01:53:18Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
ブラインド画像品質評価(BIQA)は、参照情報なしで画像品質の人間の知覚を予測する。
我々は,他のタスクからの補助的知識を活用するために,BIQAのための汎用的かつ自動化されたマルチタスク学習手法を開発した。
論文 参考訳(メタデータ) (2023-03-27T07:58:09Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Achieving Human Parity on Visual Question Answering [67.22500027651509]
The Visual Question Answering (VQA) task using both visual image and language analysis to answer a textual question to a image。
本稿では,人間がVQAで行ったのと同じような,あるいは少しでも良い結果が得られるAliceMind-MMUに関する最近の研究について述べる。
これは,(1)包括的視覚的・テキスト的特徴表現による事前学習,(2)参加する学習との効果的な相互モーダル相互作用,(3)複雑なVQAタスクのための専門的専門家モジュールを用いた新たな知識マイニングフレームワークを含む,VQAパイプラインを体系的に改善することで達成される。
論文 参考訳(メタデータ) (2021-11-17T04:25:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。