Dict-BERT: Enhancing Language Model Pre-training with Dictionary
- URL: http://arxiv.org/abs/2110.06490v1
- Date: Wed, 13 Oct 2021 04:29:14 GMT
- Title: Dict-BERT: Enhancing Language Model Pre-training with Dictionary
- Authors: Wenhao Yu, Chenguang Zhu, Yuwei Fang, Donghan Yu, Shuohang Wang,
Yichong Xu, Michael Zeng, Meng Jiang
- Abstract summary: Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora.
In this work, we focus on enhancing language model pre-training by leveraging definitions of rare words in dictionaries.
We propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions.
- Score: 42.0998323292348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained language models (PLMs) aim to learn universal language
representations by conducting self-supervised training tasks on large-scale
corpora. Since PLMs capture word semantics in different contexts, the quality
of word representations highly depends on word frequency, which usually follows
a heavy-tailed distributions in the pre-training corpus. Therefore, the
embeddings of rare words on the tail are usually poorly optimized. In this
work, we focus on enhancing language model pre-training by leveraging
definitions of the rare words in dictionaries (e.g., Wiktionary). To
incorporate a rare word definition as a part of input, we fetch its definition
from the dictionary and append it to the end of the input text sequence. In
addition to training with the masked language modeling objective, we propose
two novel self-supervised pre-training tasks on word and sentence-level
alignment between input text sequence and rare word definitions to enhance
language modeling representation with dictionary. We evaluate the proposed
Dict-BERT model on the language understanding benchmark GLUE and eight
specialized domain benchmark datasets. Extensive experiments demonstrate that
Dict-BERT can significantly improve the understanding of rare words and boost
model performance on various NLP downstream tasks.
Related papers
- Large Vocabulary Size Improves Large Language Models [28.83786065307658]
We investigate the relationship between subword vocabulary size and the performance of large language models (LLMs)
Experimental results show that larger vocabulary sizes lead to better performance in LLMs.
We introduce a simple method to use a new vocabulary instead of the pre-defined one.
arXiv Detail & Related papers (2024-06-24T10:27:07Z) - From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding [22.390804161191635]
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens.
This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes.
We introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach.
arXiv Detail & Related papers (2023-05-23T23:22:20Z) - CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
We systematically study decompounding, the task of splitting compound words into their constituents.
We introduce a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary.
We introduce a novel methodology to train dedicated models for decompounding.
arXiv Detail & Related papers (2023-05-23T16:32:27Z) - Word-Level Representation From Bytes For Language Modeling [46.28198397863388]
Sub-word tokenization is not robust to noise and difficult to generalize to new languages.
We introduce a cross-attention network that builds word-level representation directly from bytes, and a sub-word level prediction based on word-level hidden states.
Byte2Word is on par with the strong sub-word baseline BERT but only takes up 10% of embedding size.
arXiv Detail & Related papers (2022-11-23T03:11:13Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - CharBERT: Character-aware Pre-trained Language Model [36.9333890698306]
We propose a character-aware pre-trained language model named CharBERT.
We first construct the contextual word embedding for each token from the sequential character representations.
We then fuse the representations of characters and the subword representations by a novel heterogeneous interaction module.
arXiv Detail & Related papers (2020-11-03T07:13:06Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Lexical Sememe Prediction using Dictionary Definitions by Capturing
Local Semantic Correspondence [94.79912471702782]
Sememes, defined as the minimum semantic units of human languages, have been proven useful in many NLP tasks.
We propose a Sememe Correspondence Pooling (SCorP) model, which is able to capture this kind of matching to predict sememes.
We evaluate our model and baseline methods on a famous sememe KB HowNet and find that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-01-16T17:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.