Logic Constraints to Feature Importances
- URL: http://arxiv.org/abs/2110.06596v1
- Date: Wed, 13 Oct 2021 09:28:38 GMT
- Title: Logic Constraints to Feature Importances
- Authors: Nicola Picchiotti, Marco Gori
- Abstract summary: "Black box" nature of AI models is often a limit for a reliable application in high-stakes fields like diagnostic techniques, autonomous guide, etc.
Recent works have shown that an adequate level of interpretability could enforce the more general concept of model trustworthiness.
The basic idea of this paper is to exploit the human prior knowledge of the features' importance for a specific task, in order to coherently aid the phase of the model's fitting.
- Score: 17.234442722611803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Artificial Intelligence (AI) algorithms have been proven to
outperform traditional statistical methods in terms of predictivity, especially
when a large amount of data was available. Nevertheless, the "black box" nature
of AI models is often a limit for a reliable application in high-stakes fields
like diagnostic techniques, autonomous guide, etc. Recent works have shown that
an adequate level of interpretability could enforce the more general concept of
model trustworthiness. The basic idea of this paper is to exploit the human
prior knowledge of the features' importance for a specific task, in order to
coherently aid the phase of the model's fitting. This sort of "weighted" AI is
obtained by extending the empirical loss with a regularization term encouraging
the importance of the features to follow predetermined constraints. This
procedure relies on local methods for the feature importance computation, e.g.
LRP, LIME, etc. that are the link between the model weights to be optimized and
the user-defined constraints on feature importance. In the fairness area,
promising experimental results have been obtained for the Adult dataset. Many
other possible applications of this model agnostic theoretical framework are
described.
Related papers
- Case-based Explainability for Random Forest: Prototypes, Critics, Counter-factuals and Semi-factuals [1.0485739694839669]
Explainable Case-Based Reasoning (XCBR) stands out as a pragmatic approach that elucidates the output of a model by referencing actual examples.
XCBR has been relatively underexplored for many algorithms such as tree-based models until recently.
arXiv Detail & Related papers (2024-08-13T07:08:54Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
Tokenization is a critical step in the NLP pipeline.
Despite its recognized importance as a standard representation method in NLP, the theoretical underpinnings of tokenization are not yet fully understood.
The present paper contributes to addressing this theoretical gap by proposing a unified formal framework for representing and analyzing tokenizer models.
arXiv Detail & Related papers (2024-07-16T11:12:28Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
We shed new light on the traditional nearest neighbors algorithm from the perspective of information theory.
We propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model.
Our work showcases the architecture's versatility by achieving state-of-the-art results in classification and anomaly detection.
arXiv Detail & Related papers (2023-11-17T00:35:38Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
Multifidelity approximation is an important technique in scientific computation and simulation.
We introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates.
arXiv Detail & Related papers (2021-03-29T05:29:35Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Why model why? Assessing the strengths and limitations of LIME [0.0]
This paper examines the effectiveness of the Local Interpretable Model-Agnostic Explanations (LIME) xAI framework.
LIME is one of the most popular model agnostic frameworks found in the literature.
We show how LIME can be used to supplement conventional performance assessment methods.
arXiv Detail & Related papers (2020-11-30T21:08:07Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.