Case-based Explainability for Random Forest: Prototypes, Critics, Counter-factuals and Semi-factuals
- URL: http://arxiv.org/abs/2408.06679v1
- Date: Tue, 13 Aug 2024 07:08:54 GMT
- Title: Case-based Explainability for Random Forest: Prototypes, Critics, Counter-factuals and Semi-factuals
- Authors: Gregory Yampolsky, Dhruv Desai, Mingshu Li, Stefano Pasquali, Dhagash Mehta,
- Abstract summary: Explainable Case-Based Reasoning (XCBR) stands out as a pragmatic approach that elucidates the output of a model by referencing actual examples.
XCBR has been relatively underexplored for many algorithms such as tree-based models until recently.
- Score: 1.0485739694839669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explainability of black-box machine learning algorithms, commonly known as Explainable Artificial Intelligence (XAI), has become crucial for financial and other regulated industrial applications due to regulatory requirements and the need for transparency in business practices. Among the various paradigms of XAI, Explainable Case-Based Reasoning (XCBR) stands out as a pragmatic approach that elucidates the output of a model by referencing actual examples from the data used to train or test the model. Despite its potential, XCBR has been relatively underexplored for many algorithms such as tree-based models until recently. We start by observing that most XCBR methods are defined based on the distance metric learned by the algorithm. By utilizing a recently proposed technique to extract the distance metric learned by Random Forests (RFs), which is both geometry- and accuracy-preserving, we investigate various XCBR methods. These methods amount to identify special points from the training datasets, such as prototypes, critics, counter-factuals, and semi-factuals, to explain the predictions for a given query of the RF. We evaluate these special points using various evaluation metrics to assess their explanatory power and effectiveness.
Related papers
- Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
We evaluate current XAI methods by scoring them based on ground truth simulations and sensitivity analysis.
We show the differences between XAI methods in their ability to correctly predict the true sensitivity of the modeled industrial process.
arXiv Detail & Related papers (2024-07-12T09:46:26Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Explanation-by-Example Based on Item Response Theory [0.0]
This research explores the Item Response Theory (IRT) as a tool to explaining the models and measuring the level of reliability of the Explanation-by-Example approach.
From the test set, 83.8% of the errors are from instances in which the IRT points out the model as unreliable.
arXiv Detail & Related papers (2022-10-04T14:36:33Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Logic Constraints to Feature Importances [17.234442722611803]
"Black box" nature of AI models is often a limit for a reliable application in high-stakes fields like diagnostic techniques, autonomous guide, etc.
Recent works have shown that an adequate level of interpretability could enforce the more general concept of model trustworthiness.
The basic idea of this paper is to exploit the human prior knowledge of the features' importance for a specific task, in order to coherently aid the phase of the model's fitting.
arXiv Detail & Related papers (2021-10-13T09:28:38Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
This paper is a note on new directions and methodologies for validation and explanation of Machine Learning (ML) models employed for retail credit scoring in finance.
Our proposed framework draws motivation from the field of Artificial Intelligence (AI) security and adversarial ML.
arXiv Detail & Related papers (2020-08-24T00:05:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.