The Layout Generation Algorithm of Graphic Design Based on
Transformer-CVAE
- URL: http://arxiv.org/abs/2110.06794v1
- Date: Fri, 8 Oct 2021 13:36:02 GMT
- Title: The Layout Generation Algorithm of Graphic Design Based on
Transformer-CVAE
- Authors: Mengxi Guo and Dangqing Huang and Xiaodong Xie
- Abstract summary: This paper implemented the Transformer model and conditional variational autoencoder (CVAE) to the graphic design layout generation task.
It proposed an end-to-end graphic design layout generation model named LayoutT-CVAE.
Compared with the existing state-of-art models, the layout generated by ours performs better on many metrics.
- Score: 8.052709336750823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphic design is ubiquitous in people's daily lives. For graphic design, the
most time-consuming task is laying out various components in the interface.
Repetitive manual layout design will waste a lot of time for professional
graphic designers. Existing templates are usually rudimentary and not suitable
for most designs, reducing efficiency and limiting creativity. This paper
implemented the Transformer model and conditional variational autoencoder
(CVAE) to the graphic design layout generation task. It proposed an end-to-end
graphic design layout generation model named LayoutT-CVAE. We also proposed
element disentanglement and feature-based disentanglement strategies and
introduce new graphic design principles and similarity metrics into the model,
which significantly increased the controllability and interpretability of the
deep model. Compared with the existing state-of-art models, the layout
generated by ours performs better on many metrics.
Related papers
- Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
arXiv Detail & Related papers (2024-06-17T16:03:17Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
We build a comprehensive graph Transformer search space with the micro-level and macro-level designs.
EGTAS evolves graph Transformer topologies at the macro level and graph-aware strategies at the micro level.
We demonstrate the efficacy of EGTAS across a range of graph-level and node-level tasks.
arXiv Detail & Related papers (2024-05-30T07:44:31Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources.
We introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts.
Our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello.
arXiv Detail & Related papers (2024-04-23T17:58:33Z) - Graphic Design with Large Multimodal Model [38.96206668552293]
Hierarchical Layout Generation (HLG) is a more flexible and pragmatic setup, which creates graphic composition from unordered sets of design elements.
To tackle the HLG task, we introduce Graphist, the first layout generation model based on large multimodal models.
Graphist efficiently reframes the HLG as a sequence generation problem, utilizing RGB-A images as input.
arXiv Detail & Related papers (2024-04-22T17:20:38Z) - Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints [53.66698106829144]
We propose a unified model to handle a broad range of layout generation tasks.
The model is based on continuous diffusion models.
Experiment results show that LACE produces high-quality layouts.
arXiv Detail & Related papers (2024-02-07T11:12:41Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - COLE: A Hierarchical Generation Framework for Multi-Layered and Editable Graphic Design [39.809852329070466]
This paper introduces the COLE system - a hierarchical generation framework designed to address these challenges.
This COLE system can transform a vague intention prompt into a high-quality multi-layered graphic design, while also supporting flexible editing based on user input.
arXiv Detail & Related papers (2023-11-28T17:22:17Z) - PLay: Parametrically Conditioned Layout Generation using Latent
Diffusion [18.130461065261354]
We build a conditional latent diffusion model, PLay, that generates parametrically conditioned layouts in vector graphic space from user-specified guidelines.
Our method outperforms prior works across three datasets on metrics including FID and FD-VG, and in user study.
arXiv Detail & Related papers (2023-01-27T04:22:27Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.