Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models
- URL: http://arxiv.org/abs/2406.11934v1
- Date: Mon, 17 Jun 2024 16:03:17 GMT
- Title: Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models
- Authors: Rui Zhou, Chenyang Yuan, Frank Permenter, Yanxia Zhang, Nikos Arechiga, Matt Klenk, Faez Ahmed,
- Abstract summary: This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
- Score: 9.900586490845694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs. This model functions as an AI design co-pilot, providing multiple design options for incomplete designs, which we demonstrate using the bicycle design CAD dataset. Through comparative evaluations, we demonstrate that our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and tabular generative method TabCSDI in both the accuracy and diversity of imputation options. Generative modeling also enables a broader exploration of design possibilities, thereby enhancing design decision-making by allowing engineers to explore a variety of design completions. The graph model combines GNNs with the structural information contained in assembly graphs, enabling the model to understand and predict the complex interdependencies between different design parameters. The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems. By learning from an existing dataset of designs, the imputation capability allows the model to act as an intelligent assistant that autocompletes CAD designs based on user-defined partial parametric design, effectively bridging the gap between ideation and realization. The proposed work provides a pathway to not only facilitate informed design decisions but also promote creative exploration in design.
Related papers
- Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - Generative Design through Quality-Diversity Data Synthesis and Language Models [5.196236145367301]
Two fundamental challenges face generative models in engineering applications: the acquisition of high-performing, diverse datasets, and the adherence to precise constraints in generated designs.
We propose a novel approach combining optimization, constraint satisfaction, and language models to tackle these challenges in architectural design.
arXiv Detail & Related papers (2024-05-16T11:30:08Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Efficient Automatic Machine Learning via Design Graphs [72.85976749396745]
We propose FALCON, an efficient sample-based method to search for the optimal model design.
FALCON features 1) a task-agnostic module, which performs message passing on the design graph via a Graph Neural Network (GNN), and 2) a task-specific module, which conducts label propagation of the known model performance information.
We empirically show that FALCON can efficiently obtain the well-performing designs for each task using only 30 explored nodes.
arXiv Detail & Related papers (2022-10-21T21:25:59Z) - Design Target Achievement Index: A Differentiable Metric to Enhance Deep
Generative Models in Multi-Objective Inverse Design [4.091593765662773]
Design Target Achievement Index (DTAI) is a differentiable, tunable metric that scores a design's ability to achieve designer-specified minimum performance targets.
We apply DTAI to a Performance-Augmented Diverse GAN (PaDGAN) and demonstrate superior generative performance compared to a set of baseline Deep Generative Models.
arXiv Detail & Related papers (2022-05-06T04:14:34Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
The implemented approach is based on a parameter-free genetic algorithm for model design called GPComp@Free.
The experimental results confirm that a multi-objective approach to the model design allows achieving better diversity and quality of obtained models.
arXiv Detail & Related papers (2021-03-01T20:45:24Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
We present a generative model for complex free-form structures such as stroke-based drawing tasks.
Our approach is suitable for interactive use cases such as auto-completing diagrams.
arXiv Detail & Related papers (2020-06-17T15:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.