WAFFLE: Weighted Averaging for Personalized Federated Learning
- URL: http://arxiv.org/abs/2110.06978v1
- Date: Wed, 13 Oct 2021 18:40:54 GMT
- Title: WAFFLE: Weighted Averaging for Personalized Federated Learning
- Authors: Martin Beaussart, Felix Grimberg, Mary-Anne Hartley, Martin Jaggi
- Abstract summary: We introduce WAFFLE, a personalized collaborative machine learning algorithm based on SCAFFOLD.
WAFFLE uses the Euclidean distance between clients' updates to weigh their individual contributions.
Our experiments demonstrate the effectiveness of WAFFLE compared with other methods.
- Score: 38.241216472571786
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In collaborative or federated learning, model personalization can be a very
effective strategy to deal with heterogeneous training data across clients. We
introduce WAFFLE (Weighted Averaging For Federated LEarning), a personalized
collaborative machine learning algorithm based on SCAFFOLD. SCAFFOLD uses
stochastic control variates to converge towards a model close to the globally
optimal model even in tasks where the distribution of data and labels across
clients is highly skewed. In contrast, WAFFLE uses the Euclidean distance
between clients' updates to weigh their individual contributions and thus
minimize the trained personalized model loss on the specific agent of interest.
Through a series of experiments, we compare our proposed new method to two
recent personalized federated learning methods, Weight Erosion and APFL, as
well as two global learning methods, federated averaging and SCAFFOLD. We
evaluate our method using two categories of non-identical client data
distributions (concept shift and label skew) on two benchmark image data sets,
MNIST and CIFAR10. Our experiments demonstrate the effectiveness of WAFFLE
compared with other methods, as it achieves or improves accuracy with faster
convergence.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges.
We introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective.
arXiv Detail & Related papers (2024-02-07T17:46:37Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
Conventional federated learning aims to train a global model for a federation of clients with decentralized data.
The distribution shift across non-IID datasets, also known as the data heterogeneity, often poses a challenge for this one-global-model-fits-all solution.
We propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models.
arXiv Detail & Related papers (2021-10-15T22:23:14Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - CatFedAvg: Optimising Communication-efficiency and Classification
Accuracy in Federated Learning [2.2172881631608456]
We introduce a new family of Federated Learning algorithms called CatFedAvg.
It improves the communication efficiency but improves the quality of learning using a category coverage inNIST strategy.
Our experiments show that an increase of 10% absolute points accuracy using the M dataset with 70% absolute points lower network transfer over FedAvg.
arXiv Detail & Related papers (2020-11-14T06:52:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.