Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning
- URL: http://arxiv.org/abs/2110.08394v1
- Date: Fri, 15 Oct 2021 22:23:14 GMT
- Title: Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning
- Authors: Jun Luo, Shandong Wu
- Abstract summary: Conventional federated learning aims to train a global model for a federation of clients with decentralized data.
The distribution shift across non-IID datasets, also known as the data heterogeneity, often poses a challenge for this one-global-model-fits-all solution.
We propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models.
- Score: 6.0088002781256185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of conventional federated learning (FL) is to train a global model
for a federation of clients with decentralized data, reducing the systemic
privacy risk of centralized training. The distribution shift across non-IID
datasets, also known as the data heterogeneity, often poses a challenge for
this one-global-model-fits-all solution. In this work, we propose APPLE, a
personalized cross-silo FL framework that adaptively learns how much each
client can benefit from other clients' models. We also introduce a method to
flexibly control the focus of training APPLE between global and local
objectives. We empirically evaluate our method's convergence and generalization
behavior and performed extensive experiments on two benchmark datasets and two
medical imaging datasets under two non-IID settings. The results show that the
proposed personalized FL framework, APPLE, achieves state-of-the-art
performance compared to several other personalized FL approaches in the
literature.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Group Personalized Federated Learning [15.09115201646396]
Federated learning (FL) can help promote data privacy by training a shared model in a de-centralized manner on the physical devices of clients.
In this paper, we present the group personalization approach for applications of FL.
arXiv Detail & Related papers (2022-10-04T19:20:19Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - IOP-FL: Inside-Outside Personalization for Federated Medical Image
Segmentation [18.65229252289727]
Federated learning allows multiple medical institutions to collaboratively learn a global model without centralizing client data.
We propose a novel unified framework for both textitInside and Outside model Personalization in FL (IOP-FL)
Our experimental results on two medical image segmentation tasks present significant improvements over SOTA methods on both inside and outside personalization.
arXiv Detail & Related papers (2022-04-16T08:26:19Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.