Leveraging Generative Models for Covert Messaging: Challenges and Tradeoffs for "Dead-Drop" Deployments
- URL: http://arxiv.org/abs/2110.07009v4
- Date: Thu, 15 Aug 2024 21:37:58 GMT
- Title: Leveraging Generative Models for Covert Messaging: Challenges and Tradeoffs for "Dead-Drop" Deployments
- Authors: Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, Thomas Shrimpton,
- Abstract summary: generative models of natural language text encode message-carrying bits into a sequence of samples from the model, ultimately yielding a plausible natural language covertext.
We make these challenges concrete, by considering the natural application of such a pipeline: namely, "dead-drop" covert messaging over large, public internet platforms.
We implement a system around this model-based format-transforming encryption pipeline, and give an empirical analysis of its performance and (heuristic) security.
- Score: 10.423657458233713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State of the art generative models of human-produced content are the focus of many recent papers that explore their use for steganographic communication. In particular, generative models of natural language text. Loosely, these works (invertibly) encode message-carrying bits into a sequence of samples from the model, ultimately yielding a plausible natural language covertext. By focusing on this narrow steganographic piece, prior work has largely ignored the significant algorithmic challenges, and performance-security tradeoffs, that arise when one actually tries to build a messaging pipeline around it. We make these challenges concrete, by considering the natural application of such a pipeline: namely, "dead-drop" covert messaging over large, public internet platforms (e.g. social media sites). We explicate the challenges and describe approaches to overcome them, surfacing in the process important performance and security tradeoffs that must be carefully tuned. We implement a system around this model-based format-transforming encryption pipeline, and give an empirical analysis of its performance and (heuristic) security.
Related papers
- Robust Steganography from Large Language Models [1.5749416770494704]
We study the problem of robust steganography.
We design and implement our steganographic schemes that embed arbitrary secret messages into natural language text.
arXiv Detail & Related papers (2025-04-11T21:06:36Z) - Semantic Steganography: A Framework for Robust and High-Capacity Information Hiding using Large Language Models [25.52890764952079]
generative linguistic steganography has become a prevalent technique for hiding information within model-generated texts.
We propose a semantic steganography framework based on Large Language Models (LLMs)
This framework offers robustness and reliability for transmission in complex channels, as well as resistance to text rendering and word blocking.
arXiv Detail & Related papers (2024-12-15T04:04:23Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings [5.257719744958367]
This thesis explores three challenging settings in text classification by leveraging the intrinsic knowledge of pretrained language models (PLMs)
We develop models that utilize features based on contextualized word representations from PLMs, achieving performance that rivals or surpasses human accuracy.
Lastly, we tackle the sensitivity of large language models to in-context learning prompts by selecting effective demonstrations.
arXiv Detail & Related papers (2024-08-28T09:07:30Z) - We're Calling an Intervention: Exploring Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text.
We do so by designing interventions that approximate core features of user-generated text and their interactions with existing biases of language models.
Applying our interventions during language model adaptation to nonstandard text variations, we gain important insights into when such adaptation is successful.
arXiv Detail & Related papers (2024-04-10T18:56:53Z) - Detection of Machine-Generated Text: Literature Survey [0.0]
This literature survey aims to compile and synthesize accomplishments and developments in the field of machine-generated text.
It also gives an overview of machine-generated text trends and explores the larger societal implications.
arXiv Detail & Related papers (2024-01-02T01:44:15Z) - From Text to Mask: Localizing Entities Using the Attention of Text-to-Image Diffusion Models [38.14123683674355]
We propose a method to utilize the attention mechanism in the denoising network of text-to-image diffusion models.
We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting.
Our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.
arXiv Detail & Related papers (2023-09-08T04:10:01Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
We propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process.
Our model can generate more coherent texts than state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-19T07:29:08Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
We focus on the Commongen benchmark, wherein the aim is to generate a plausible sentence for a given set of input concepts.
We propose strategies for enhancing the semantic correctness of the generated text.
arXiv Detail & Related papers (2020-12-19T23:23:40Z) - Causal BERT : Language models for causality detection between events
expressed in text [1.0756038762528868]
Causality understanding between events is helpful in many areas, including health care, business risk management and finance.
"Cause-Effect" relationships between natural language events continues to remain a challenge simply because it is often expressed implicitly.
Our proposed methods achieve the state-of-art performance in three different data distributions and can be leveraged for extraction of a causal diagram.
arXiv Detail & Related papers (2020-12-10T04:59:12Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models.
This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs.
arXiv Detail & Related papers (2020-09-16T06:53:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.