AI Total: Analyzing Security ML Models with Imperfect Data in Production
- URL: http://arxiv.org/abs/2110.07028v1
- Date: Wed, 13 Oct 2021 20:56:05 GMT
- Title: AI Total: Analyzing Security ML Models with Imperfect Data in Production
- Authors: Awalin Sopan and Konstantin Berlin
- Abstract summary: Development of new machine learning models is typically done on manually curated data sets.
We develop a web-based visualization system that allows the users to quickly gather headline performance numbers.
It also enables the users to immediately observe the root cause of an issue when something goes wrong.
- Score: 2.629585075202626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Development of new machine learning models is typically done on manually
curated data sets, making them unsuitable for evaluating the models'
performance during operations, where the evaluation needs to be performed
automatically on incoming streams of new data. Unfortunately, pure reliance on
a fully automatic pipeline for monitoring model performance makes it difficult
to understand if any observed performance issues are due to model performance,
pipeline issues, emerging data distribution biases, or some combination of the
above. With this in mind, we developed a web-based visualization system that
allows the users to quickly gather headline performance numbers while
maintaining confidence that the underlying data pipeline is functioning
properly. It also enables the users to immediately observe the root cause of an
issue when something goes wrong. We introduce a novel way to analyze
performance under data issues using a data coverage equalizer. We describe the
various modifications and additional plots, filters, and drill-downs that we
added on top of the standard evaluation metrics typically tracked in machine
learning (ML) applications, and walk through some real world examples that
proved valuable for introspecting our models.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.
We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.
We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.
After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Generalizable Error Modeling for Human Data Annotation: Evidence From an Industry-Scale Search Data Annotation Program [0.0]
This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks.
We show that errors can be predicted with moderate model performance (AUC=0.65-0.75) and that model performance generalizes well across applications.
We demonstrate the usefulness of the model in the context of auditing, where prioritizing tasks with high predicted error probabilities considerably increases the amount of corrected annotation errors.
arXiv Detail & Related papers (2023-10-08T21:21:19Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
We propose an approach to automatically generating counterfactual data for data augmentation and explanation.
A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance.
arXiv Detail & Related papers (2021-06-29T10:27:01Z) - MAIN: Multihead-Attention Imputation Networks [4.427447378048202]
We propose a novel mechanism based on multi-head attention which can be applied effortlessly in any model.
Our method inductively models patterns of missingness in the input data in order to increase the performance of the downstream task.
arXiv Detail & Related papers (2021-02-10T13:50:02Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Self-Updating Models with Error Remediation [0.5156484100374059]
We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available.
A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors.
We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data.
arXiv Detail & Related papers (2020-05-19T23:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.