Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance
- URL: http://arxiv.org/abs/2408.13648v1
- Date: Sat, 24 Aug 2024 18:28:19 GMT
- Title: Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance
- Authors: Thomas Decker, Alexander Koebler, Michael Lebacher, Ingo Thon, Volker Tresp, Florian Buettner,
- Abstract summary: We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
- Score: 61.06245197347139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring and maintaining machine learning models are among the most critical challenges in translating recent advances in the field into real-world applications. However, current monitoring methods lack the capability of provide actionable insights answering the question of why the performance of a particular model really degraded. In this work, we propose a novel approach to explain the behavior of a black-box model under feature shifts by attributing an estimated performance change to interpretable input characteristics. We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation (XPE). We analyze the underlying assumptions and demonstrate the superiority of our approach over several baselines on different data sets across various data modalities such as images, audio, and tabular data. We also indicate how the generated results can lead to valuable insights, enabling explanatory model monitoring by revealing potential root causes for model deterioration and guiding toward actionable countermeasures.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Benchmarking and Enhancing Disentanglement in Concept-Residual Models [4.177318966048984]
Concept bottleneck models (CBMs) are interpretable models that first predict a set of semantically meaningful features.
CBMs' performance depends on the engineered features and can severely suffer from incomplete sets of concepts.
This work proposes three novel approaches to mitigate information leakage by disentangling concepts and residuals.
arXiv Detail & Related papers (2023-11-30T21:07:26Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Consistent Explanations in the Face of Model Indeterminacy via
Ensembling [12.661530681518899]
This work addresses the challenge of providing consistent explanations for predictive models in the presence of model indeterminacy.
We introduce ensemble methods to enhance the consistency of the explanations provided in these scenarios.
Our findings highlight the importance of considering model indeterminacy when interpreting explanations.
arXiv Detail & Related papers (2023-06-09T18:45:43Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - A monitoring framework for deployed machine learning models with supply
chain examples [2.904613270228912]
We describe a framework for monitoring machine learning models; and, (2) its implementation for a big data supply chain application.
We use our implementation to study drift in model features, predictions, and performance on three real data sets.
arXiv Detail & Related papers (2022-11-11T14:31:38Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.