Robust MIMO Detection using Hypernetworks with Learned Regularizers
- URL: http://arxiv.org/abs/2110.07053v1
- Date: Wed, 13 Oct 2021 22:07:13 GMT
- Title: Robust MIMO Detection using Hypernetworks with Learned Regularizers
- Authors: Nicolas Zilberstein, Chris Dick, Rahman Doost-Mohammady, Ashutosh
Sabharwal, Santiago Segarra
- Abstract summary: We propose a method that tries to strike a balance between symbol error rate (SER) performance and generality of channels.
Our method is based on hypernetworks that generate the parameters of a neural network-based detector that works well on a specific channel.
- Score: 28.917679125825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal symbol detection in multiple-input multiple-output (MIMO) systems is
known to be an NP-hard problem. Recently, there has been a growing interest to
get reasonably close to the optimal solution using neural networks while
keeping the computational complexity in check. However, existing work based on
deep learning shows that it is difficult to design a generic network that works
well for a variety of channels. In this work, we propose a method that tries to
strike a balance between symbol error rate (SER) performance and generality of
channels. Our method is based on hypernetworks that generate the parameters of
a neural network-based detector that works well on a specific channel. We
propose a general framework by regularizing the training of the hypernetwork
with some pre-trained instances of the channel-specific method. Through
numerical experiments, we show that our proposed method yields high performance
for a set of prespecified channel realizations while generalizing well to all
channels drawn from a specific distribution.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
We deploy a general residual convolutional neural network to achieve channel estimation in a downlink scenario.
Compared with other deep learning methods for channel estimation, our results suggest improved mean squared error computation.
arXiv Detail & Related papers (2022-01-24T19:55:10Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
We present a general channel pruning approach that can be applied to various complicated structures.
We derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels.
Our method can be used to prune any structures including those with coupled channels.
arXiv Detail & Related papers (2021-08-02T08:21:44Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
We propose a computationally efficient attention-based network combined with the Gaussian process regression to generate real-valued sequence.
We develop a block-wise training algorithm to allow mini-batch training of the network while the GP is trained using full-batch.
The algorithm has been proved to converge and shows comparable, if not better, quality of the found solution.
arXiv Detail & Related papers (2021-02-10T01:19:15Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
We propose a data-driven algorithm, which compresses deep neural networks in a differentiable way by exploiting the characteristics of operations.
We perform extensive experiments and achieve outstanding performance in terms of the accuracy of output networks.
arXiv Detail & Related papers (2020-07-08T07:44:00Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - DeepRx: Fully Convolutional Deep Learning Receiver [8.739166282613118]
DeepRx is a fully convolutional neural network that executes the whole receiver pipeline from frequency domain signal stream to uncoded bits in a 5G-compliant fashion.
We demonstrate that DeepRx outperforms traditional methods.
arXiv Detail & Related papers (2020-05-04T13:53:47Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z) - Deep HyperNetwork-Based MIMO Detection [10.433286163090179]
Conventional algorithms are either too complex to be practical or suffer from poor performance.
Recent approaches tried to address those challenges by implementing the detector as a deep neural network.
In this work, we address both issues by training an additional neural network (NN), referred to as the hypernetwork, which takes as input the channel matrix and generates the weights of the neural NN-based detector.
arXiv Detail & Related papers (2020-02-07T13:03:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.