Attentive Gaussian processes for probabilistic time-series generation
- URL: http://arxiv.org/abs/2102.05208v1
- Date: Wed, 10 Feb 2021 01:19:15 GMT
- Title: Attentive Gaussian processes for probabilistic time-series generation
- Authors: Kuilin Chen, Chi-Guhn Lee
- Abstract summary: We propose a computationally efficient attention-based network combined with the Gaussian process regression to generate real-valued sequence.
We develop a block-wise training algorithm to allow mini-batch training of the network while the GP is trained using full-batch.
The algorithm has been proved to converge and shows comparable, if not better, quality of the found solution.
- Score: 4.94950858749529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transduction of sequence has been mostly done by recurrent networks,
which are computationally demanding and often underestimate uncertainty
severely. We propose a computationally efficient attention-based network
combined with the Gaussian process regression to generate real-valued sequence,
which we call the Attentive-GP. The proposed model not only improves the
training efficiency by dispensing recurrence and convolutions but also learns
the factorized generative distribution with Bayesian representation. However,
the presence of the GP precludes the commonly used mini-batch approach to the
training of the attention network. Therefore, we develop a block-wise training
algorithm to allow mini-batch training of the network while the GP is trained
using full-batch, resulting in a scalable training method. The algorithm has
been proved to converge and shows comparable, if not better, quality of the
found solution. As the algorithm does not assume any specific network
architecture, it can be used with a wide range of hybrid models such as neural
networks with kernel machine layers in the scarcity of resources for
computation and memory.
Related papers
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
Deep operator network (DeepNet) has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications.
We introduce a random sampling technique to be adopted the training of DeepONet, aimed at improving generalization ability of the model, while significantly reducing computational time.
Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - Learning Discrete Weights and Activations Using the Local
Reparameterization Trick [21.563618480463067]
In computer vision and machine learning, a crucial challenge is to lower the computation and memory demands for neural network inference.
By binarizing the network weights and activations, one can significantly reduce computational complexity.
This leads to a more efficient neural network inference that can be deployed on low-resource devices.
arXiv Detail & Related papers (2023-07-04T12:27:10Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Classified as unknown: A novel Bayesian neural network [0.0]
We develop a new efficient Bayesian learning algorithm for fully connected neural networks.
We generalize the algorithm for a single perceptron for binary classification in citeH to multi-layer perceptrons for multi-class classification.
arXiv Detail & Related papers (2023-01-31T04:27:09Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
We present a family of BP-based message-passing algorithms with a reinforcement field that biases towards locally entropic distributions.
These algorithms are capable of training multi-layer neural networks with discrete weights and activations with performance comparable to SGD-inspired solutions.
arXiv Detail & Related papers (2021-10-27T16:52:26Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
We propose a hybrid method that uses both backpropagation and evolutionary strategies to train Convolutional Neural Networks.
We show that the proposed hybrid method is capable of improving upon regular training in the task of image classification.
arXiv Detail & Related papers (2020-04-15T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.