論文の概要: Adversarial examples by perturbing high-level features in intermediate
decoder layers
- arxiv url: http://arxiv.org/abs/2110.07182v1
- Date: Thu, 14 Oct 2021 07:08:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-16 03:52:18.454308
- Title: Adversarial examples by perturbing high-level features in intermediate
decoder layers
- Title(参考訳): 中間デコーダ層における高次特徴の摂動による逆例
- Authors: Vojt\v{e}ch \v{C}erm\'ak, Luk\'a\v{s} Adam
- Abstract要約: 画素を摂動する代わりに、入力画像のエンコーダ-デコーダ表現とデコーダの中間層を摂動する。
我々の摂動は、より長いくちばしや緑のくちばしのような意味的な意味を持っている。
本手法は,敵の攻撃に対して,敵の訓練に基づく防御技術が脆弱であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel method for creating adversarial examples. Instead of
perturbing pixels, we use an encoder-decoder representation of the input image
and perturb intermediate layers in the decoder. This changes the high-level
features provided by the generative model. Therefore, our perturbation
possesses semantic meaning, such as a longer beak or green tints. We formulate
this task as an optimization problem by minimizing the Wasserstein distance
between the adversarial and initial images under a misclassification
constraint. We employ the projected gradient method with a simple inexact
projection. Due to the projection, all iterations are feasible, and our method
always generates adversarial images. We perform numerical experiments on the
MNIST and ImageNet datasets in both targeted and untargeted settings. We
demonstrate that our adversarial images are much less vulnerable to
steganographic defence techniques than pixel-based attacks. Moreover, we show
that our method modifies key features such as edges and that defence techniques
based on adversarial training are vulnerable to our attacks.
- Abstract(参考訳): 敵対的例を作成するための新しい手法を提案する。
画素を摂動させる代わりに、入力画像のエンコーダ-デコーダ表現とデコーダ内の中間層を摂動させる。
これは生成モデルによって提供される高レベルな特徴を変える。
したがって、我々の摂動は長いくちばしや緑色の色合いのような意味的な意味を持っている。
我々は,この課題を,逆と初期画像の間のwasserstein距離を誤分類制約下で最小化することにより,最適化問題として定式化する。
投影勾配法を, 単純な不正確な投影法で採用する。
プロジェクションにより、全てのイテレーションが実現可能であり、我々の手法は常に逆画像を生成する。
我々は,MNISTデータセットとImageNetデータセットに対して,ターゲット設定と未ターゲット設定の両方で数値実験を行う。
敵画像は画素ベースの攻撃よりもステガノグラフィー防御技術に弱いことが実証された。
さらに,本手法はエッジなどの重要な特徴を修飾し,敵の訓練に基づく防御技術が攻撃に対して脆弱であることを示す。
関連論文リスト
- IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks [16.577595936609665]
本稿では,画像再サンプリングという,敵対的攻撃に対する新たなアプローチを提案する。
画像再サンプリングは、幾何学的変換によって指定されたシーンの再調整や再レンダリングの過程をシミュレートして、離散画像を新しい画像に変換する。
本手法は,クリーンな画像の精度を維持しつつ,多様な深層モデルの様々な攻撃に対する対角的堅牢性を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T11:19:32Z) - SAIF: Sparse Adversarial and Imperceptible Attack Framework [7.025774823899217]
Sparse Adversarial and Interpretable Attack Framework (SAIF) と呼ばれる新しい攻撃手法を提案する。
具体的には、少数の画素で低次摂動を含む知覚不能な攻撃を設計し、これらのスパース攻撃を利用して分類器の脆弱性を明らかにする。
SAIFは、非常に受け入れ難い、解釈可能な敵の例を計算し、ImageNetデータセット上で最先端のスパース攻撃手法より優れている。
論文 参考訳(メタデータ) (2022-12-14T20:28:50Z) - Scale-free Photo-realistic Adversarial Pattern Attack [20.818415741759512]
Generative Adversarial Networks (GAN)は、より意味論的に意味のあるテクスチャパターンを合成することによって、この問題に部分的に対処することができる。
本稿では,任意のスケールの画像に対して意味論的に意味のある敵対パターンを世界規模で合成する,スケールフリーな生成ベースアタックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-12T11:25:39Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Transferable Sparse Adversarial Attack [62.134905824604104]
オーバーフィッティング問題を緩和するジェネレータアーキテクチャを導入し、転送可能なスパース対逆例を効率的に作成する。
提案手法は,他の最適化手法よりも700$times$高速な推論速度を実現する。
論文 参考訳(メタデータ) (2021-05-31T06:44:58Z) - Feature Space Targeted Attacks by Statistic Alignment [74.40447383387574]
特徴空間ターゲットは、中間特徴写像を変調して摂動画像を攻撃する。
画素ワイドユークリッド距離の現在の選択は、ソースとターゲットの特徴に不合理に空間整合性制約を課すため、不一致を測定することが疑問視されている。
本稿では,Pair-wise Alignment AttackとGlobal-wise Alignment Attackという2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-25T03:46:39Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
敵対的な例には、深いニューラルネットワークを誤った予測にだますことができる慎重に作られた摂動が含まれます。
誤り拡散のハーフトン化に基づく新しい画像変換防御を提案し、逆転の例に対して防御するための逆転訓練と組み合わせます。
論文 参考訳(メタデータ) (2021-01-23T07:55:02Z) - Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation [0.8021197489470756]
本論文では,新しいコンテキスト認識画像デノイジングアルゴリズムを提案する。
適応画像スムージング技術とカラーリダクション技術を組み合わせて、逆画像からの摂動を除去します。
提案手法は, 敵の攻撃による敵の摂動を低減し, 深部畳み込みニューラルネットワークモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2021-01-14T19:15:28Z) - Patch-wise Attack for Fooling Deep Neural Network [153.59832333877543]
我々は,一般的な訓練と防御モデルに対するブラックボックス攻撃であるパッチワイド反復アルゴリズムを提案する。
我々は、防衛モデルで9.2%、通常訓練されたモデルで3.7%、成功率で著しく改善した。
論文 参考訳(メタデータ) (2020-07-14T01:50:22Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。