論文の概要: Adversarial Scene Reconstruction and Object Detection System for
Assisting Autonomous Vehicle
- arxiv url: http://arxiv.org/abs/2110.07716v1
- Date: Wed, 13 Oct 2021 09:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 15:26:32.041529
- Title: Adversarial Scene Reconstruction and Object Detection System for
Assisting Autonomous Vehicle
- Title(参考訳): 自律走行車両支援のための対向シーン再構成および物体検出システム
- Authors: Md Foysal Haque, Hay-Youn Lim, and Dae-Seong Kang
- Abstract要約: 本論文は、暗視のシーンを昼光のような鮮明なシーンに再構成する深層学習モデルを提案する。
提案されたモデルは、シーン再構築の精度87.3%、シーン理解と検出のタスクの精度89.2%を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current computer vision era classifying scenes through video
surveillance systems is a crucial task. Artificial Intelligence (AI) Video
Surveillance technologies have been advanced remarkably while artificial
intelligence and deep learning ascended into the system. Adopting the superior
compounds of deep learning visual classification methods achieved enormous
accuracy in classifying visual scenes. However, the visual classifiers face
difficulties examining the scenes in dark visible areas, especially during the
nighttime. Also, the classifiers face difficulties in identifying the contexts
of the scenes. This paper proposed a deep learning model that reconstructs dark
visual scenes to clear scenes like daylight, and the method recognizes visual
actions for the autonomous vehicle. The proposed model achieved 87.3 percent
accuracy for scene reconstruction and 89.2 percent in scene understanding and
detection tasks.
- Abstract(参考訳): 現在のコンピュータビジョン時代において、映像監視システムによるシーンの分類は重要な課題である。
人工知能(AI) ビデオ監視技術は目覚ましい進歩を遂げ、人工知能とディープラーニングはシステムに進化した。
深層学習の視覚分類手法の優れた化合物の採用は、視覚シーンの分類において極めて正確である。
しかし、視覚分類器は、特に夜間の暗視領域のシーンを調べるのに困難に直面している。
また、分類者はシーンのコンテキストを特定するのに困難に直面している。
そこで本研究では,暗く見えるシーンを再現し,昼光のようなシーンをクリアするディープラーニングモデルを提案し,自律走行車両の視覚動作を認識する。
提案モデルは,シーン復元の精度が87.3%,シーン理解と検出タスクが89.2%であった。
関連論文リスト
- Semantic-Based Active Perception for Humanoid Visual Tasks with Foveal Sensors [49.99728312519117]
この研究の目的は、最近の意味に基づくアクティブな知覚モデルが、人間が定期的に行う視覚的なタスクをいかに正確に達成できるかを確立することである。
このモデルは、現在のオブジェクト検出器が多数のオブジェクトクラスをローカライズし、分類し、複数の固定にまたがるシーンのセマンティック記述を更新する能力を利用する。
シーン探索の課題では、セマンティック・ベースの手法は従来のサリエンシ・ベース・モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-16T18:15:57Z) - Knowledge-enhanced Multi-perspective Video Representation Learning for
Scene Recognition [33.800842679024164]
我々は,映像シーン認識の課題に対処し,高レベルの映像表現を学習して映像シーンを分類することを目的とする。
既存の作品の多くは、時間的視点で視覚情報やテキスト情報のみからビデオのシーンを識別している。
複数の視点から映像表現をモデル化する新しい2ストリームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-09T04:37:10Z) - SeaDSC: A video-based unsupervised method for dynamic scene change
detection in unmanned surface vehicles [3.2716252389196288]
本稿では,無人表面車両(USV)の動的シーン変化を検出するためのアプローチについて概説する。
本研究の目的は,海中映像データのダイナミックなシーン,特に高い類似性を示すシーンに顕著な変化を見出すことである。
本研究では,動的シーン変化検出システムにおいて,教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T07:34:01Z) - Compositional Scene Representation Learning via Reconstruction: A Survey [48.33349317481124]
構成シーン表現学習はそのような能力を実現するタスクである。
ディープニューラルネットワークは表現学習において有利であることが証明されている。
大量のラベルのないデータを使用し、費用がかかるデータアノテーションを避けることができるため、再構築による学習は有利である。
論文 参考訳(メタデータ) (2022-02-15T02:14:05Z) - Weakly Supervised Human-Object Interaction Detection in Video via
Contrastive Spatiotemporal Regions [81.88294320397826]
システムは、ビデオに人間と物体の相互作用が存在するか、あるいは人間と物体の実際の位置を知らない。
文節から収集した人-物間相互作用による6.5k以上のビデオからなるデータセットを提案する。
ビデオデータセットのアノテーションに適応した弱教師付きベースラインの性能向上を実証した。
論文 参考訳(メタデータ) (2021-10-07T15:30:18Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
身体的視覚ナビゲーション」問題では、エージェントが3D環境をナビゲートする必要がある。
本稿では、総合的な文献調査を提供することで、視覚ナビゲーションの具体的分野における現在の研究の概要を確立することを試みる。
論文 参考訳(メタデータ) (2021-07-07T12:09:04Z) - An Image-based Approach of Task-driven Driving Scene Categorization [7.291979964739049]
本稿では,弱監督データを用いたタスク駆動運転場面分類手法を提案する。
異なるセマンティック属性のシーンを対比学習によって識別する尺度を学習する。
セマンティックシーン類似性学習とドライビングシーン分類の結果を広範囲に研究した。
論文 参考訳(メタデータ) (2021-03-10T08:23:36Z) - Toward Accurate Person-level Action Recognition in Videos of Crowded
Scenes [131.9067467127761]
我々は、シーンの情報を完全に活用し、新しいデータを集めることで、アクション認識を改善することに集中する。
具体的には、各フレームの空間的位置を検出するために、強い人間の検出器を採用する。
そして、行動認識モデルを適用して、HIEデータセットとインターネットから多様なシーンを持つ新しいデータの両方でビデオフレームから時間情報を学ぶ。
論文 参考訳(メタデータ) (2020-10-16T13:08:50Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z) - Deep learning for scene recognition from visual data: a survey [2.580765958706854]
この研究は、視覚データから深層学習モデルを用いて、シーン認識における最先端の技術をレビューすることを目的としている。
シーン認識は依然としてコンピュータビジョンの新たな分野であり、単一の画像と動的な画像の観点から対処されてきた。
論文 参考訳(メタデータ) (2020-07-03T16:53:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。