Model-Change Active Learning in Graph-Based Semi-Supervised Learning
- URL: http://arxiv.org/abs/2110.07739v1
- Date: Thu, 14 Oct 2021 21:47:10 GMT
- Title: Model-Change Active Learning in Graph-Based Semi-Supervised Learning
- Authors: Kevin Miller and Andrea L. Bertozzi
- Abstract summary: "Model-change" active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s)
We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.
- Score: 7.208515071018781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning in semi-supervised classification involves introducing
additional labels for unlabelled data to improve the accuracy of the underlying
classifier. A challenge is to identify which points to label to best improve
performance while limiting the number of new labels. "Model-change" active
learning quantifies the resulting change incurred in the classifier by
introducing the additional label(s). We pair this idea with graph-based
semi-supervised learning methods, that use the spectrum of the graph Laplacian
matrix, which can be truncated to avoid prohibitively large computational and
storage costs. We consider a family of convex loss functions for which the
acquisition function can be efficiently approximated using the Laplace
approximation of the posterior distribution. We show a variety of multiclass
examples that illustrate improved performance over prior state-of-art.
Related papers
- Graph-Based Semi-Supervised Segregated Lipschitz Learning [0.21847754147782888]
This paper presents an approach to semi-supervised learning for the classification of data using the Lipschitz Learning on graphs.
We develop a graph-based semi-supervised learning framework that leverages the properties of the infinity Laplacian to propagate labels in a dataset where only a few samples are labeled.
arXiv Detail & Related papers (2024-11-05T17:16:56Z) - MALADY: Multiclass Active Learning with Auction Dynamics on Graphs [0.9831489366502301]
We introduce the Multiclass Active Learning with Auction Dynamics on Graphs (MALADY) framework for efficient active learning.
We generalize the auction dynamics algorithm on similarity graphs for semi-supervised learning in [24] to incorporate a more general optimization functional.
We also introduce a novel active learning acquisition function that uses the dual variable of the auction algorithm to measure the uncertainty in the classifier to prioritize queries near the decision boundaries between different classes.
arXiv Detail & Related papers (2024-09-14T16:20:26Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Preserving Fine-Grain Feature Information in Classification via Entropic
Regularization [10.358087436626391]
We show that standard cross-entropy can lead to overfitting to coarse-related features.
We introduce an entropy-based regularization to promote more diversity in the feature space of trained models.
arXiv Detail & Related papers (2022-08-07T09:25:57Z) - Gradient-based Label Binning in Multi-label Classification [0.0]
In multi-label classification, the ability to model dependencies between labels is crucial to effectively optimize non-decomposable evaluation measures.
The utilization of second-order derivatives, as used by many recent boosting approaches, helps to guide the minimization of non-decomposable losses.
In this work, we address the computational bottleneck of such approach by integrating a novel approximation technique into the boosting procedure.
arXiv Detail & Related papers (2021-06-22T11:48:48Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs.
Our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph convolutional neural network (GCN) for the prediction phase and maximizes the expected error reduction in the query phase.
We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-09T18:00:53Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.