論文の概要: Socially Aware Bias Measurements for Hindi Language Representations
- arxiv url: http://arxiv.org/abs/2110.07871v1
- Date: Fri, 15 Oct 2021 05:49:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 13:13:21.092394
- Title: Socially Aware Bias Measurements for Hindi Language Representations
- Title(参考訳): ヒンディー語表現のための社会認識バイアス測定
- Authors: Vijit Malik, Sunipa Dev, Akihiro Nishi, Nanyun Peng and Kai-Wei Chang
- Abstract要約: 偏見は、広く話されている地域の歴史と文化に基づいて、特定の言語表現に特有のものであることを示す。
我々は,言語表現のモデル化において,言語的・文法的アーティファクトとともに,社会認識の必要性を強調した。
- 参考スコア(独自算出の注目度): 38.40818373580979
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language representations are an efficient tool used across NLP, but they are
strife with encoded societal biases. These biases are studied extensively, but
with a primary focus on English language representations and biases common in
the context of Western society. In this work, we investigate the biases present
in Hindi language representations such as caste and religion associated biases.
We demonstrate how biases are unique to specific language representations based
on the history and culture of the region they are widely spoken in, and also
how the same societal bias (such as binary gender associated biases) when
investigated across languages is encoded by different words and text spans.
With this work, we emphasize on the necessity of social-awareness along with
linguistic and grammatical artefacts when modeling language representations, in
order to understand the biases encoded.
- Abstract(参考訳): 言語表現は、NLP全体で使用される効率的なツールであるが、それらは、符号化された社会的バイアスに悩まされている。
これらのバイアスは広く研究されているが、主に西洋社会の文脈で共通する英語の表現とバイアスに焦点を当てている。
本研究では,ヒンディー語表現におけるカストや宗教関連バイアスなどのバイアスについて検討する。
本研究では,各言語で広く話されている地域の歴史や文化に基づいて,特定の言語表現に対してバイアスがどのようにユニークなのか,また,言語をまたいだ調査において同一の社会バイアス(二進性に関連するバイアスなど)が異なる単語やテキストスパンでエンコードされているかを示す。
本研究では,言語表現をモデル化する際に,言語的・文法的アーティファクトとともに社会的認識の必要性を強調し,符号化されたバイアスを理解する。
関連論文リスト
- Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - Global Voices, Local Biases: Socio-Cultural Prejudices across Languages [22.92083941222383]
人間の偏見はユビキタスであるが、一様ではない。言語、文化、社会的境界を越えて格差が存在する。
本研究では,Word Embedding Association Test (WEAT) を24言語に拡張し,より広範な研究を可能にする。
より広く普及している社会的バイアスを包含するために、毒性、能力主義などにわたる新しいバイアス次元について検討する。
論文 参考訳(メタデータ) (2023-10-26T17:07:50Z) - Evaluating Biased Attitude Associations of Language Models in an
Intersectional Context [2.891314299138311]
言語モデルは、心理学で文書化された暗黙のバイアスを埋め込んだ大規模コーパスで訓練される。
我々は、年齢、教育、性別、身長、知性、識字性、人種、宗教、性、性的指向、社会階級、体重に関するバイアスを研究する。
言語モデルは、性同一性、社会的階級、性的指向のシグナルに対して最も偏りのある態度を示す。
論文 参考訳(メタデータ) (2023-07-07T03:01:56Z) - Comparing Biases and the Impact of Multilingual Training across Multiple
Languages [70.84047257764405]
ダウンストリーム感情分析タスクにおいて,イタリア語,中国語,英語,ヘブライ語,スペイン語のバイアス分析を行う。
我々は、既存の感情バイアスのテンプレートを、人種、宗教、国籍、性別の4つの属性で、イタリア語、中国語、ヘブライ語、スペイン語に適応させる。
以上の結果から,各言語の文化に支配的な集団の嗜好など,バイアス表現の類似性を明らかにした。
論文 参考訳(メタデータ) (2023-05-18T18:15:07Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - Efficient Gender Debiasing of Pre-trained Indic Language Models [0.0]
言語モデルが事前訓練されたデータに存在する性別バイアスは、これらのモデルを使用するシステムに反映される。
本稿では,ヒンディー語モデルにおける職業に関する性別バイアスを測定した。
以上の結果から,提案手法の適応後のバイアスが低減されることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T09:15:58Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z) - Evaluating Gender Bias in Hindi-English Machine Translation [0.1503974529275767]
我々は,ヒンディー語の文法的考察に基づいて,TGBI計量の修正版を実装した。
我々は、事前学習した埋め込みのための複数のメトリクスと、機械翻訳モデルで学習したメトリクスを比較して比較する。
論文 参考訳(メタデータ) (2021-06-16T10:35:51Z) - Towards Debiasing Sentence Representations [109.70181221796469]
Sent-Debiasはバイアスを取り除くのに有効であり、同時に文レベルの下流タスクのパフォーマンスを保っていることを示す。
我々は、より公平なNLPのための広く採用されている文表現から社会的偏見を識別・除去する今後の研究に刺激を与えることを期待している。
論文 参考訳(メタデータ) (2020-07-16T04:22:30Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。