MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
Retraining
- URL: http://arxiv.org/abs/2110.08009v2
- Date: Mon, 18 Oct 2021 01:41:01 GMT
- Title: MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
Retraining
- Authors: Ahmed Imtiaz Humayun, Randall Balestriero, Richard Baraniuk
- Abstract summary: We develop a differential geometry based sampler -- coined MaGNET -- that, given any trained DGN, produces samples that are uniformly distributed on the learned manifold.
We prove theoretically and empirically that our technique produces a uniform distribution on the manifold regardless of the training set distribution.
- Score: 9.294580808320534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Generative Networks (DGNs) are extensively employed in Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), and their
variants to approximate the data manifold, and data distribution on that
manifold. However, training samples are often obtained based on preferences,
costs, or convenience producing artifacts in the empirical data distribution
e.g., the large fraction of smiling faces in the CelebA dataset or the large
fraction of dark-haired individuals in FFHQ. These inconsistencies will be
reproduced when sampling from the trained DGN, which has far-reaching potential
implications for fairness, data augmentation, anomaly detection, domain
adaptation, and beyond. In response, we develop a differential geometry based
sampler -- coined MaGNET -- that, given any trained DGN, produces samples that
are uniformly distributed on the learned manifold. We prove theoretically and
empirically that our technique produces a uniform distribution on the manifold
regardless of the training set distribution. We perform a range of experiments
on various datasets and DGNs. One of them considers the state-of-the-art
StyleGAN2 trained on FFHQ dataset, where uniform sampling via MaGNET increases
distribution precision and recall by 4.1% & 3.0% and decreases gender bias by
41.2%, without requiring labels or retraining.
Related papers
- Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - FedUV: Uniformity and Variance for Heterogeneous Federated Learning [5.9330433627374815]
Federated learning is a promising framework to train neural networks with widely distributed data.
Recent work has shown this is due to the final layer of the network being most prone to local bias.
We investigate the training dynamics of the classifier by applying SVD to the weights motivated by the observation that freezing weights results in constant singular values.
arXiv Detail & Related papers (2024-02-27T15:53:15Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
Distribution shifts can substantially degrade the accuracy of machine learning systems deployed in the wild.
We present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts.
We show that standard training results in substantially lower out-of-distribution than in-distribution performance.
arXiv Detail & Related papers (2020-12-14T11:14:56Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - The Bures Metric for Generative Adversarial Networks [10.69910379275607]
Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples.
We propose to match the real batch diversity to the fake batch diversity.
We observe that diversity matching reduces mode collapse substantially and has a positive effect on the sample quality.
arXiv Detail & Related papers (2020-06-16T12:04:41Z) - Robust Federated Learning: The Case of Affine Distribution Shifts [41.27887358989414]
We develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples.
We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user.
arXiv Detail & Related papers (2020-06-16T03:43:59Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space.
In many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own.
In this paper, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner.
arXiv Detail & Related papers (2020-02-02T02:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.