論文の概要: BBQ: A Hand-Built Bias Benchmark for Question Answering
- arxiv url: http://arxiv.org/abs/2110.08193v1
- Date: Fri, 15 Oct 2021 16:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 14:15:28.088583
- Title: BBQ: A Hand-Built Bias Benchmark for Question Answering
- Title(参考訳): BBQ: 質問応答のための手持ちバイアスベンチマーク
- Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar,
Jason Phang, Jana Thompson, Phu Mon Htut, Samuel R. Bowman
- Abstract要約: NLPモデルは、世界に存在する社会的バイアスを学習することは十分に文書化されているが、これらのバイアスが、質問応答(QA)のような適用されたタスクに対して、実際のモデルアウトプットにどのように現れるかを示す研究はほとんど行われていない。
筆者らによって構築された質問セットからなるデータセットであるBias Benchmark for QA (BBQ)を導入し、米国英語の文脈に関連する9つの異なる社会的次元に沿って、保護されたクラスに属する人々に対するテキストテストされた社会的偏見を強調した。
文脈が曖昧であるとき、モデルはステレオタイプに強く依存していることが分かり、つまり、モデルの出力は、この設定において有害なバイアスを一貫して再現する。
- 参考スコア(独自算出の注目度): 25.108222728383236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is well documented that NLP models learn social biases present in the
world, but little work has been done to show how these biases manifest in
actual model outputs for applied tasks like question answering (QA). We
introduce the Bias Benchmark for QA (BBQ), a dataset consisting of
question-sets constructed by the authors that highlight \textit{attested}
social biases against people belonging to protected classes along nine
different social dimensions relevant for U.S. English-speaking contexts. Our
task evaluates model responses at two distinct levels: (i) given an
under-informative context, test how strongly model answers reflect social
biases, and (ii) given an adequately informative context, test whether the
model's biases still override a correct answer choice. We find that models
strongly rely on stereotypes when the context is ambiguous, meaning that the
model's outputs consistently reproduce harmful biases in this setting. Though
models are much more accurate when the context provides an unambiguous answer,
they still rely on stereotyped information and achieve an accuracy 2.5
percentage points higher on examples where the correct answer aligns with a
social bias, with this accuracy difference widening to 5 points for examples
targeting gender.
- Abstract(参考訳): nlpモデルが世界に存在する社会バイアスを学ぶことは十分に文書化されているが、質問応答(qa)のような応用タスクの実際のモデルアウトプットにこれらのバイアスがどのように現れるかを示すための作業はほとんど行われていない。
筆者らによって構築された質問セットからなるデータセットであるBias Benchmark for QA (BBQ)を導入し、米国英語の文脈に関連する9つの異なる社会的次元に沿って保護されたクラスに属する人々に対する社会的偏見を強調した。
我々のタスクはモデル応答を2つの異なるレベルで評価する。
(i)非形式的文脈を与えられた場合、回答がいかに社会的バイアスを反映しているかを強くモデル化するか、そして
2) 適切な情報的コンテキストを与えられた場合、モデルのバイアスが依然として正しい解選択を上書きするかどうかをテストする。
文脈が曖昧である場合、モデルはステレオタイプに強く依存しており、モデルの出力は、この設定で常に有害なバイアスを再現する。
文脈があいまいな答えを与える場合、モデルの方がはるかに正確であるが、それでもステレオタイプ情報に頼り、正解が社会的バイアスに一致する例では2.5ポイント高い精度を達成し、この精度差は性別を対象とする例では5ポイントに拡大する。
関連論文リスト
- Fact-or-Fair: A Checklist for Behavioral Testing of AI Models on Fairness-Related Queries [85.909363478929]
本研究では,権威ある情報源から収集した19の実世界統計に着目した。
主観的および主観的な問合せからなるチェックリストを作成し,大規模言語モデルの振る舞いを解析する。
事実性と公平性を評価するためのメトリクスを提案し、これらの2つの側面の間に固有のトレードオフを正式に証明する。
論文 参考訳(メタデータ) (2025-02-09T10:54:11Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
我々は、LVLM(Large Vision-Language Models)におけるバイアスを評価するベンチマークであるVLBiasBenchを紹介する。
VLBiasBenchは、年齢、障害ステータス、性別、国籍、身体的外観、人種、宗教、職業、社会経済ステータスを含む9つの異なる社会バイアスのカテゴリを含むデータセットと、人種x性別と人種x社会経済ステータスの2つの交叉バイアスのカテゴリを含む。
15のオープンソースモデルと2つの高度なクローズドソースモデルに対して広範な評価を行い、これらのモデルに存在するバイアスに関する新たな洞察を得る。
論文 参考訳(メタデータ) (2024-06-20T10:56:59Z) - COBIAS: Contextual Reliability in Bias Assessment [14.594920595573038]
大規模言語モデル(LLM)は、トレーニング対象のWebデータからバイアスを受け取り、ステレオタイプや偏見を含むことが多い。
これらのバイアスを評価し緩和するための現在の手法はバイアスベンチマークデータセットに依存している。
本稿では,モデルが現れる可能性のあるさまざまなコンテキストを考慮し,モデルロバスト性を偏りのある文に評価するコンテキスト信頼性フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T10:46:11Z) - SocialStigmaQA: A Benchmark to Uncover Stigma Amplification in
Generative Language Models [8.211129045180636]
我々は、生成言語モデルにおいて、シュティグマを通して、社会的偏見の増幅を捉えるためのベンチマークを導入する。
私たちのベンチマークであるSocialStigmaQAには、ソーシャルバイアスとモデル堅牢性の両方をテストするために慎重に構築された、さまざまなプロンプトスタイルの約10Kプロンプトが含まれています。
社会的に偏りのあるアウトプットの割合は、様々なデコード戦略やスタイルにまたがって45%から59%の範囲であることがわかった。
論文 参考訳(メタデータ) (2023-12-12T18:27:44Z) - Mitigating Bias for Question Answering Models by Tracking Bias Influence [84.66462028537475]
本稿では,複数選択QAモデルのバイアスを軽減するためのBMBIを提案する。
バイアスのある例から学んだ場合、モデルがよりバイアスに傾くように傾くという直感に基づいて、クエリインスタンスのバイアスレベルを測定します。
本手法は,複数のバイアスカテゴリにまたがる複数のQA定式化に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-13T00:49:09Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
対話型質問回答モデル(ConvQA)は,会話中に複数回発生した質問文と過去の質問文のペアを用いて質問に回答することを目的としている。
本稿では,会話履歴における不正確な回答を,ConvQAモデルから推定された信頼度と不確実性に基づいてフィルタリングすることを提案する。
我々は2つの標準ConvQAデータセット上で、回答選択に基づくリアルな会話質問回答モデルの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-10T09:42:07Z) - Few-shot Instruction Prompts for Pretrained Language Models to Detect
Social Biases [55.45617404586874]
我々は、事前訓練された言語モデル(LM)を誘導する数ショットの命令ベース手法を提案する。
大規模なLMは、微調整モデルとよく似た精度で、異なる種類の細粒度バイアスを検出できることを示す。
論文 参考訳(メタデータ) (2021-12-15T04:19:52Z) - UnQovering Stereotyping Biases via Underspecified Questions [68.81749777034409]
未特定質問からバイアスを探索・定量化するためのフレームワークUNQOVERを提案する。
モデルスコアの素直な使用は,2種類の推論誤差による誤ったバイアス推定につながる可能性があることを示す。
我々はこの指標を用いて、性別、国籍、民族、宗教の4つの重要なステレオタイプの分析を行う。
論文 参考訳(メタデータ) (2020-10-06T01:49:52Z) - Roses Are Red, Violets Are Blue... but Should Vqa Expect Them To? [0.0]
ドメイン内精度を総合的に測定する標準評価基準は誤解を招くものであると論じる。
これらの問題を克服するためのGQA-OODベンチマークを提案する。
論文 参考訳(メタデータ) (2020-06-09T08:50:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。