Group Personalized Federated Learning
- URL: http://arxiv.org/abs/2210.01863v1
- Date: Tue, 4 Oct 2022 19:20:19 GMT
- Title: Group Personalized Federated Learning
- Authors: Zhe Liu, Yue Hui, Fuchun Peng
- Abstract summary: Federated learning (FL) can help promote data privacy by training a shared model in a de-centralized manner on the physical devices of clients.
In this paper, we present the group personalization approach for applications of FL.
- Score: 15.09115201646396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) can help promote data privacy by training a shared
model in a de-centralized manner on the physical devices of clients. In the
presence of highly heterogeneous distributions of local data, personalized FL
strategy seeks to mitigate the potential client drift. In this paper, we
present the group personalization approach for applications of FL in which
there exist inherent partitions among clients that are significantly distinct.
In our method, the global FL model is fine-tuned through another FL training
process over each homogeneous group of clients, after which each group-specific
FL model is further adapted and personalized for any client. The proposed
method can be well interpreted from a Bayesian hierarchical modeling
perspective. With experiments on two real-world datasets, we demonstrate this
approach can achieve superior personalization performance than other FL
counterparts.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
Almost all existing systems have to face large communication burdens if the central FL server fails.
It personalizes the "right" in the deep models by alternately updating the shared and personal parameters.
To further promote the shared parameters aggregation process, we propose DFed integrating the local Sharpness Miniization.
arXiv Detail & Related papers (2023-05-24T13:52:18Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
Conventional federated learning aims to train a global model for a federation of clients with decentralized data.
The distribution shift across non-IID datasets, also known as the data heterogeneity, often poses a challenge for this one-global-model-fits-all solution.
We propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models.
arXiv Detail & Related papers (2021-10-15T22:23:14Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.