論文の概要: Extremely Simple Streaming Forest
- arxiv url: http://arxiv.org/abs/2110.08483v7
- Date: Thu, 26 Jun 2025 01:33:13 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-06-29 13:54:54.373552
- Title: Extremely Simple Streaming Forest
- Title(参考訳): 極端に単純なストリーミング林
- Authors: Haoyin Xu, Jayanta Dey, Sambit Panda, Joshua T. Vogelstein,
- Abstract要約: 我々のアプローチである$textitExtremely Simple Streaming Forest$ (XForest)は、上記の制限のいずれかに苦しめられません。
XForestは、多くの現実世界の問題に容易に適用可能な、ストリーミングツリーと森林のシンプルな標準を確立している。
- 参考スコア(独自算出の注目度): 5.367145280840156
- License:
- Abstract: Decision forests, including random forests and gradient boosting trees, remain the leading machine learning methods for many real-world data problems, especially on tabular data. However, most of the current implementations only operate in batch mode, and therefore cannot incrementally update when more data arrive. Several previous works developed streaming trees and ensembles to overcome this limitation. Nonetheless, we found that those state-of-the-art algorithms suffer from a number of drawbacks, including low accuracy on some problems and high memory usage on others. We therefore developed an extremely simple extension of decision trees: given new data, simply update existing trees by continuing to grow them, and replace some old trees with new ones to control the total number of trees. In a benchmark suite containing 72 classification problems (the OpenML-CC18 data suite), we illustrate that our approach, $\textit{Extremely Simple Streaming Forest}$ (XForest), does not suffer from either of the aforementioned limitations. On those datasets, we also demonstrate that our approach often performs as well as, and sometimes even better than, conventional batch decision forest algorithms. With a $\textit{zero-added-node}$ approach, XForest-Zero, we also further extend existing splits to new tasks, and this very efficient method only requires inference time. Thus, XForests establish a simple standard for streaming trees and forests that could readily be applied to many real-world problems.
- Abstract(参考訳): ランダムな森林や勾配木などの決定的森林は、特に表データにおいて、現実世界のデータ問題の主要な機械学習手法である。
しかし、現在の実装のほとんどはバッチモードでしか動作しないため、より多くのデータが到着しても段階的に更新することはできない。
以前のいくつかの研究は、この制限を克服するためにストリーミングツリーとアンサンブルを開発した。
それにもかかわらず、これらの最先端のアルゴリズムは、いくつかの問題に対する精度の低下や、他の問題に対するメモリ使用量の増加など、多くの欠点に悩まされていることがわかった。
そこで我々は、決定木を非常に単純な拡張として開発し、新しいデータを与え、成長を続けることで既存の木を更新し、古い木を新しい木に置き換えて、全体の木数を制御する。
72の分類問題(OpenML-CC18データスイート)を含むベンチマークスイートでは、上記の制限のいずれかに苦しむことのない、$\textit{Extremely Simple Streaming Forest}$ (XForest)のアプローチが示されている。
これらのデータセットでは、我々のアプローチが従来のバッチ決定森林アルゴリズムよりもよく、時には優れていることもしばしば示しています。
XForest-Zeroは、$\textit{zero-added-node}$アプローチで、既存の分割を新しいタスクに拡張します。
そのため、XForestsは、多くの現実世界の問題に容易に適用可能な、ストリーミングツリーや森林のシンプルな標準を確立している。
関連論文リスト
- A Powerful Random Forest Featuring Linear Extensions (RaFFLE) [1.2233362977312945]
RaFFLEは、ランダムな森林アンサンブル内でPILOTツリーをベースラーナーとして統合する新しいフレームワークである。
PILOT木は、従来の決定木の計算効率と線形モデル木の柔軟性を組み合わせたものである。
RaFFLEは様々な回帰問題に対処するための汎用ツールであることが証明されている。
論文 参考訳(メタデータ) (2025-02-14T14:22:51Z) - Soft Hoeffding Tree: A Transparent and Differentiable Model on Data Streams [2.6524539020042663]
Hoeffding Treeのようなストリームマイニングアルゴリズムは、入ってくるデータストリームに基づいて成長する。
我々は,データストリームを無限に変化させる可能性のある,新しい微分可能かつ透明なモデルとして,ソフトなHoeffding Tree (SoHoT)を提案する。
論文 参考訳(メタデータ) (2024-11-07T15:49:53Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Plannerは、大きな言語モデルでタスクプランニングを3つの異なるフェーズに再構成する。
Tree-Plannerは高い効率を維持しながら最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-12T17:59:50Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
森林点雲のツリーインスタンスセグメンテーションのためのディープラーニングに基づくアプローチであるTreeLearnを提案する。
TreeLearnは、すでにセグメンテーションされたポイントクラウドにデータ駆動でトレーニングされているため、事前に定義された機能やアルゴリズムに依存しない。
我々は、Lidar360ソフトウェアを使って6665本の木の森林点雲上でTreeLearnを訓練した。
論文 参考訳(メタデータ) (2023-09-15T15:20:16Z) - SoftTreeMax: Policy Gradient with Tree Search [72.9513807133171]
我々は、ツリー検索をポリシー勾配に統合する最初のアプローチであるSoftTreeMaxを紹介します。
Atariでは、SoftTreeMaxが分散PPOと比較して、実行時のパフォーマンスを最大5倍向上させる。
論文 参考訳(メタデータ) (2022-09-28T09:55:47Z) - Hierarchical Shrinkage: improving the accuracy and interpretability of
tree-based methods [10.289846887751079]
木構造を改変しないポストホックアルゴリズムである階層収縮(Hierarchical Shrinkage, HS)を導入する。
HSは、他の正規化技術と併用しても、決定木の予測性能を大幅に向上させる。
すべてのコードとモデルはGithubにある本格的なパッケージでリリースされている。
論文 参考訳(メタデータ) (2022-02-02T02:43:23Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
決定木は"divide-and-conquer"の戦略を使用して、入力機能とラベル間の依存性に関する複雑な問題を小さなものに分割します。
近年, 計算広告, 推薦システム, 情報検索などの性能が大幅に向上している。
論文 参考訳(メタデータ) (2021-01-20T16:47:59Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - An Efficient Adversarial Attack for Tree Ensembles [91.05779257472675]
傾斜促進決定木(DT)や無作為林(RF)などの木に基づくアンサンブルに対する敵対的攻撃
提案手法は,従来のMILP (Mixed-integer linear programming) よりも数千倍高速であることを示す。
私たちのコードはhttps://chong-z/tree-ensemble- attackで利用可能です。
論文 参考訳(メタデータ) (2020-10-22T10:59:49Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
我々は、オブジェクトカテゴリ間の関係に関する事前知識を利用して、きめ細かいクラスを粗い親クラスにクラスタリングする。
そこで本研究では,NMS再サンプリング法を提案する。
提案手法はフォレストR-CNNと呼ばれ,ほとんどのオブジェクト認識モデルに適用可能なプラグイン・アンド・プレイモジュールとして機能する。
論文 参考訳(メタデータ) (2020-08-13T03:52:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。