論文の概要: Multimodal Dialogue Response Generation
- arxiv url: http://arxiv.org/abs/2110.08515v1
- Date: Sat, 16 Oct 2021 08:52:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 13:31:34.578885
- Title: Multimodal Dialogue Response Generation
- Title(参考訳): マルチモーダル対話応答生成
- Authors: Qingfeng Sun, Yujing Wang, Can Xu, Kai Zheng, Yaming Yang, Huang Hu,
Fei Xu, Jessica Zhang, Xiubo Geng, Daxin Jiang
- Abstract要約: 本稿では,対話履歴を入力とし,テキストシーケンスや画像を応答として生成するマルチモーダル対話生成モデルを提案する。
我々は、限られた訓練例しか利用できないという自然な仮定の下で、マルチモーダルな対話生成を考える。
このような低リソース環境では、モデル全体の多モーダル対話に依存するパラメータを分離するために、新しい対話エージェントであるDivterを考案する。
- 参考スコア(独自算出の注目度): 27.611204319057393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Responsing with image has been recognized as an important capability for an
intelligent conversational agent. Yet existing works only focus on exploring
the multimodal dialogue models which depend on retrieval-based methods, but
neglecting generation methods. To fill in the gaps, we first present a
multimodal dialogue generation model, which takes the dialogue history as
input, then generates a textual sequence or an image as response. Learning such
a model often requires multimodal dialogues containing both texts and images
which are difficult to obtain. Motivated by the challenge in practice, we
consider multimodal dialogue generation under a natural assumption that only
limited training examples are available. In such a low-resource setting, we
devise a novel conversational agent, Divter, in order to isolate parameters
that depend on multimodal dialogues from the entire generation model. By this
means, the major part of the model can be learned from a large number of
text-only dialogues and text-image pairs respectively, then the whole
parameters can be well fitted using the limited training examples. Extensive
experiments demonstrate our method achieves state-of-the-art results in both
automatic and human evaluation, and can generate informative text and
high-resolution image responses.
- Abstract(参考訳): 画像による応答は、インテリジェントな会話エージェントにとって重要な能力として認識されている。
しかし、既存の作品は、検索ベースの方法に依存するが生成方法を無視するマルチモーダル対話モデルのみに焦点を当てている。
このギャップを埋めるために,まず対話履歴を入力として,テキストシーケンスや画像を応答として生成するマルチモーダル対話生成モデルを提案する。
このようなモデルを学ぶには、取得が難しいテキストと画像の両方を含むマルチモーダル対話を必要とすることが多い。
実際の課題に触発されて、限られた訓練例のみが利用できるという自然な仮定の下で、マルチモーダル対話生成を考える。
このような低リソース環境では、生成モデル全体のマルチモーダル対話に依存するパラメータを分離するために、新しい対話エージェントであるDivterを考案する。
これにより、モデルの主要な部分は、多数のテキストのみの対話とテキストイメージペアから学習でき、限られたトレーニング例を使用してパラメータ全体を適切に適合させることができる。
本手法は,自動評価と人間評価の両方において最先端の成果を達成し,有益なテキストと高分解能画像応答を生成できることを示す。
関連論文リスト
- An End-to-End Model for Photo-Sharing Multi-modal Dialogue Generation [43.139415423751615]
写真共有マルチモーダル対話生成には、テキスト応答を生成するだけでなく、適切なタイミングで写真を共有するための対話エージェントが必要である。
パイプラインモデルは、この複雑なマルチモーダルタスクを処理するために、画像キャプションモデル、テキスト生成モデル、画像生成モデルを統合する。
本稿では,画像パーセプトロンと画像生成器を大言語モデルに統合した,写真共有マルチモーダル対話生成のための最初のエンドツーエンドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-16T10:33:19Z) - BI-MDRG: Bridging Image History in Multimodal Dialogue Response Generation [21.052101309555464]
MDRG(Multimodal Dialogue Response Generation)は、テキスト、画像、あるいは両方で応答を生成する必要があるタスクである。
これまでの作業は、エンドツーエンドアプローチを採用するのではなく、モデルのイメージ入力と出力の両方の中間ステップとして、テキストのモダリティに依存していた。
本稿では、画像コンテンツに対するテキスト応答の関連性を高めるために、画像履歴情報を活用できるように、応答生成経路をブリッジするBI-MDRGを提案する。
論文 参考訳(メタデータ) (2024-08-12T05:22:42Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - IMAD: IMage-Augmented multi-modal Dialogue [0.043847653914745384]
本稿では,対話の文脈でイメージを解釈するマルチモーダル対話システムについて,新しい視点を提示する。
マルチモーダル対話データセットを自動構築する2段階の手法を提案する。
最初の段階では、テキストと画像の類似性と文の類似性を利用して、どの発話を画像に置き換えるかを識別する。
第2段階では、関連する画像のサブセットを選択し、視覚的質問応答モデルでフィルタリングすることで、これらの発話を置き換える。
論文 参考訳(メタデータ) (2023-05-17T18:38:10Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
大規模事前学習言語モデル(PLM)は、多くのNLPタスクにまたがる優れた性能を示している。
対話状態追跡(DST)のようなより複雑なタスクでは、望ましい意図を確実に伝達するプロンプトを設計するのは簡単ではない。
対話文の長さを制限するためのサリエンシモデルを導入し、クエリ毎に多くの例を含めることができます。
論文 参考訳(メタデータ) (2023-02-12T15:05:10Z) - Grounding Language Models to Images for Multimodal Inputs and Outputs [89.30027812161686]
本稿では,事前学習したテキストのみの言語モデルを視覚領域に最適化する効率的な手法を提案する。
任意にインターリーブされた画像とテキストデータを処理し、検索した画像とインターリーブされたテキストを生成する。
論文 参考訳(メタデータ) (2023-01-31T18:33:44Z) - DialogCC: An Automated Pipeline for Creating High-Quality Multi-Modal Dialogue Dataset [18.449076451976236]
本稿では,マルチモーダル対話データセットを構築するための自動パイプラインを提案する。
我々のパイプラインでは、画像と対話のコヒーレンスを保証するため、GPT-4に潜在的な画像共有モーメントを推測するよう促す。
このパイプラインを通じて、高品質で多様な多モード対話データセットであるDialogCCを紹介する。
論文 参考訳(メタデータ) (2022-12-08T07:29:07Z) - Constructing Multi-Modal Dialogue Dataset by Replacing Text with
Semantically Relevant Images [17.076424447172297]
本稿では,人間の介入を最小限に抑えた45kマルチモーダル対話データセットを提案する。
このようなデータセットを作成する方法は,(1)テキスト対話データセットの作成と前処理,(2)テキストから画像への置き換え技術による画像混合対話の作成,(3)文脈相似性に基づくフィルタリング手法を用いて構成する。
論文 参考訳(メタデータ) (2021-07-19T08:44:11Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z) - Low-Resource Knowledge-Grounded Dialogue Generation [74.09352261943913]
我々は、限られた訓練例しか利用できないという自然な仮定のもと、知識基底による対話生成を考察する。
生成モデル全体から知識基底の対話に依存するパラメータを分離するために,不整合応答デコーダを考案する。
1/8のトレーニングデータだけで、我々のモデルは最先端のパフォーマンスを達成でき、ドメイン外の知識をうまく一般化できる。
論文 参考訳(メタデータ) (2020-02-24T16:20:32Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
Visual Dialogタスクは、対話に対する次の応答を生成するために、画像情報と会話コンテキスト情報の両方を利用するモデルを必要とする。
過去の共同モダリティ(歴史とイメージ)モデルが過度に再現され,対話履歴を記憶する傾向が強いことを示す。
本稿では,共有パラメータを用いたアンサンブルとコンセンサス・ドロップアウト融合による2つのモデルの統合手法を提案する。
論文 参考訳(メタデータ) (2020-01-17T14:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。