論文の概要: Visual-aware Attention Dual-stream Decoder for Video Captioning
- arxiv url: http://arxiv.org/abs/2110.08578v1
- Date: Sat, 16 Oct 2021 14:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 14:05:20.036675
- Title: Visual-aware Attention Dual-stream Decoder for Video Captioning
- Title(参考訳): 映像キャプションのための視覚注意二重ストリームデコーダ
- Authors: Zhixin Sun, Xian Zhong, Shuqin Chen, Lin Li, and Luo Zhong
- Abstract要約: 現在のビデオキャプション方式の注意機構は、各フレームに重みを割り当てることを学び、デコーダを動的に推進する。
これは、シーケンスフレームで抽出された視覚的特徴の相関と時間的コヒーレンスを明示的にモデル化するものではない。
本稿では,単語の時間的シーケンスフレームの変化を前回のモーメントで統一する,新しい視覚認識注意(VA)モデルを提案する。
VADD(Visual-Aware Attention Dual-stream Decoder)の有効性を示す。
- 参考スコア(独自算出の注目度): 12.139806877591212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video captioning is a challenging task that captures different visual parts
and describes them in sentences, for it requires visual and linguistic
coherence. The attention mechanism in the current video captioning method
learns to assign weight to each frame, promoting the decoder dynamically. This
may not explicitly model the correlation and the temporal coherence of the
visual features extracted in the sequence frames.To generate semantically
coherent sentences, we propose a new Visual-aware Attention (VA) model, which
concatenates dynamic changes of temporal sequence frames with the words at the
previous moment, as the input of attention mechanism to extract sequence
features.In addition, the prevalent approaches widely use the teacher-forcing
(TF) learning during training, where the next token is generated conditioned on
the previous ground-truth tokens. The semantic information in the previously
generated tokens is lost. Therefore, we design a self-forcing (SF) stream that
takes the semantic information in the probability distribution of the previous
token as input to enhance the current token.The Dual-stream Decoder (DD)
architecture unifies the TF and SF streams, generating sentences to promote the
annotated captioning for both streams.Meanwhile, with the Dual-stream Decoder
utilized, the exposure bias problem is alleviated, caused by the discrepancy
between the training and testing in the TF learning.The effectiveness of the
proposed Visual-aware Attention Dual-stream Decoder (VADD) is demonstrated
through the result of experimental studies on Microsoft video description
(MSVD) corpus and MSR-Video to text (MSR-VTT) datasets.
- Abstract(参考訳): ビデオキャプションは、視覚的および言語的コヒーレンスを必要とするため、異なる視覚部分をキャプチャし、文章で記述する困難なタスクである。
現在のビデオキャプション方式の注意機構は、各フレームに重みを割り当てることを学び、デコーダを動的に推進する。
This may not explicitly model the correlation and the temporal coherence of the visual features extracted in the sequence frames.To generate semantically coherent sentences, we propose a new Visual-aware Attention (VA) model, which concatenates dynamic changes of temporal sequence frames with the words at the previous moment, as the input of attention mechanism to extract sequence features.In addition, the prevalent approaches widely use the teacher-forcing (TF) learning during training, where the next token is generated conditioned on the previous ground-truth tokens.
以前に生成されたトークンのセマンティック情報は失われる。
Therefore, we design a self-forcing (SF) stream that takes the semantic information in the probability distribution of the previous token as input to enhance the current token.The Dual-stream Decoder (DD) architecture unifies the TF and SF streams, generating sentences to promote the annotated captioning for both streams.Meanwhile, with the Dual-stream Decoder utilized, the exposure bias problem is alleviated, caused by the discrepancy between the training and testing in the TF learning.The effectiveness of the proposed Visual-aware Attention Dual-stream Decoder (VADD) is demonstrated through the result of experimental studies on Microsoft video description (MSVD) corpus and MSR-Video to text (MSR-VTT) datasets.
関連論文リスト
- Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation [72.90144343056227]
ビデオ理解タスクのためのテキスト・ツー・ビデオ拡散モデル(T2V)から生成した視覚的表現について検討する。
固定されたT2Vモデル上に構築された専用コンポーネントを備えた新しいフレームワーク「VD-IT」を紹介する。
我々のVD-ITは、既存の最先端手法を超越して、非常に競争力のある結果を得る。
論文 参考訳(メタデータ) (2024-03-18T17:59:58Z) - Conditional Variational Autoencoder for Sign Language Translation with
Cross-Modal Alignment [33.96363443363547]
手話翻訳(SLT)は、連続手話動画をテキストに変換することを目的としている。
SLT(CV-SLT)のための条件変分オートエンコーダに基づく新しいフレームワークを提案する。
CV-SLTは、エンコーダとデコーダの出力を正規化するために、2つのKullback-Leiblerの分岐を持つ2つの経路からなる。
論文 参考訳(メタデータ) (2023-12-25T08:20:40Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) は、視覚知覚タスクにおいて、事前訓練されたテキスト・画像拡散モデルの意味情報を利用する新しいフレームワークである。
本稿では,提案したVPDを用いて,下流の視覚的タスクに迅速に適応できることを示す。
論文 参考訳(メタデータ) (2023-03-03T18:59:47Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
映像モーメント検索(VMR)における視覚とテキストの相関
既存の方法は、視覚的およびテキスト的理解のために、個別の事前学習機能抽出器に依存している。
本稿では,映像モーメントの理解を促進するために,ビジュアルダイナミックインジェクション(Visual-Dynamic Injection, VDI)と呼ばれる汎用手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T19:29:05Z) - Diverse Video Captioning by Adaptive Spatio-temporal Attention [7.96569366755701]
エンド・ツー・エンドのエンコーダ・デコーダ・ビデオキャプション・フレームワークには2つのトランスフォーマー・ベースのアーキテクチャが組み込まれている。
本稿では,必要なフレーム数を削減するための適応フレーム選択方式を提案する。
ビデオキャプションに関するセマンティックな概念を,各サンプルのすべての接頭辞の真実を集約することで推定する。
論文 参考訳(メタデータ) (2022-08-19T11:21:59Z) - MILES: Visual BERT Pre-training with Injected Language Semantics for
Video-text Retrieval [43.2299969152561]
ゼロショット・ファインチューン評価プロトコルを用いた4つのデータセットのテキスト・ビデオ検索手法
提案手法は,ゼロショットおよびファインチューン評価プロトコルを用いた4つのデータセット上でのテキスト・ビデオ検索における最先端手法よりも優れる。
論文 参考訳(メタデータ) (2022-04-26T16:06:31Z) - Deeply Interleaved Two-Stream Encoder for Referring Video Segmentation [87.49579477873196]
まず,CNNに基づく視覚特徴とトランスフォーマーに基づく言語特徴を階層的に抽出する2ストリームエンコーダを設計する。
視覚言語相互誘導(VLMG)モジュールをエンコーダに複数回挿入し,多モード特徴の階層的および進行的融合を促進する。
フレーム間の時間的アライメントを促進するために,言語誘導型マルチスケール動的フィルタリング(LMDF)モジュールを提案する。
論文 参考訳(メタデータ) (2022-03-30T01:06:13Z) - Variational Stacked Local Attention Networks for Diverse Video
Captioning [2.492343817244558]
変動重畳ローカルアテンションネットワークは、低ランク双線形プールを自己注意的特徴相互作用に活用する。
構文と多様性の観点から,MSVD と MSR-VTT のデータセット上で VSLAN を評価する。
論文 参考訳(メタデータ) (2022-01-04T05:14:34Z) - DVCFlow: Modeling Information Flow Towards Human-like Video Captioning [163.71539565491113]
既存の手法は主に個々のビデオセグメントからキャプションを生成するが、グローバルな視覚的コンテキストへの適応が欠如している。
映像のシーケンスやキャプションによって変化するプログレッシブな情報をモデル化するために,情報フローの概念を導入する。
提案手法は, 競争基準を著しく上回り, 主観的, 客観的なテストにより, より人間的なテキストを生成する。
論文 参考訳(メタデータ) (2021-11-19T10:46:45Z) - Enhanced Modality Transition for Image Captioning [51.72997126838352]
MTM(Modality Transition Module)を構築し、言語モデルに転送する前に視覚的機能をセマンティック表現に転送します。
トレーニング段階では、モダリティ遷移ネットワークは提案されたモダリティ損失によって最適化される。
提案手法の有効性を示すMS-COCOデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-02-23T07:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。