Pseudo-label refinement using superpixels for semi-supervised brain
tumour segmentation
- URL: http://arxiv.org/abs/2110.08589v1
- Date: Sat, 16 Oct 2021 15:17:11 GMT
- Title: Pseudo-label refinement using superpixels for semi-supervised brain
tumour segmentation
- Authors: Bethany H. Thompson, Gaetano Di Caterina, Jeremy P. Voisey
- Abstract summary: Training neural networks using limited annotations is an important problem in the medical domain.
Semi-supervised learning aims to overcome this problem by learning segmentations with very little annotated data.
We propose a framework based on superpixels to improve the accuracy of the pseudo labels.
- Score: 0.6767885381740952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training neural networks using limited annotations is an important problem in
the medical domain. Deep Neural Networks (DNNs) typically require large,
annotated datasets to achieve acceptable performance which, in the medical
domain, are especially difficult to obtain as they require significant time
from expert radiologists. Semi-supervised learning aims to overcome this
problem by learning segmentations with very little annotated data, whilst
exploiting large amounts of unlabelled data. However, the best-known technique,
which utilises inferred pseudo-labels, is vulnerable to inaccurate
pseudo-labels degrading the performance. We propose a framework based on
superpixels - meaningful clusters of adjacent pixels - to improve the accuracy
of the pseudo labels and address this issue. Our framework combines superpixels
with semi-supervised learning, refining the pseudo-labels during training using
the features and edges of the superpixel maps. This method is evaluated on a
multimodal magnetic resonance imaging (MRI) dataset for the task of brain
tumour region segmentation. Our method demonstrates improved performance over
the standard semi-supervised pseudo-labelling baseline when there is a reduced
annotator burden and only 5 annotated patients are available. We report
DSC=0.824 and DSC=0.707 for the test set whole tumour and tumour core regions
respectively.
Related papers
- SP${ }^3$ : Superpixel-propagated pseudo-label learning for weakly semi-supervised medical image segmentation [10.127428696255848]
SuperPixel-Propagated Pseudo-label learning method is proposed to handle the inadequate supervisory information challenge in weakly semi-supervised segmentation.
Our method achieves state-of-the-art performance on both tumor and organ segmentation datasets under the WSSS setting.
arXiv Detail & Related papers (2024-11-18T15:14:36Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
This work proposes the use of a superpixel generation model and a superpixel clustering model to enable weakly supervised brain tumor segmentations.
We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Challenge 2020 dataset and labels indicating the presence of tumors to train the pipeline.
Our method achieved a mean Dice coefficient of 0.691 and a mean 95% Hausdorff distance of 18.1, outperforming existing superpixel-based weakly supervised segmentation methods.
arXiv Detail & Related papers (2022-09-20T18:08:34Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Localized Perturbations For Weakly-Supervised Segmentation of Glioma
Brain Tumours [0.5801621787540266]
This work proposes the use of localized perturbations as a weakly-supervised solution to extract segmentation masks of brain tumours from a pretrained 3D classification model.
We also propose a novel optimal perturbation method that exploits 3D superpixels to find the most relevant area for a given classification using a U-net architecture.
arXiv Detail & Related papers (2021-11-29T21:01:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
We propose a spatially constrained deep convolutional neural network (DCNN) to achieve smooth and robust image segmentation.
The proposed method has been evaluated based on corneal confocal microscopic ( CCM) images for nerve fiber segmentation.
arXiv Detail & Related papers (2020-04-20T16:56:13Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.