Deep Learning and Spectral Embedding for Graph Partitioning
- URL: http://arxiv.org/abs/2110.08614v1
- Date: Sat, 16 Oct 2021 16:57:01 GMT
- Title: Deep Learning and Spectral Embedding for Graph Partitioning
- Authors: Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, Pieter Ghysels
- Abstract summary: We present a graph bisection and partitioning algorithm based on graph neural networks.
For each node in the graph, the network outputs probabilities for each of the partitions.
- Score: 0.13999481573773068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a graph bisection and partitioning algorithm based on graph neural
networks. For each node in the graph, the network outputs probabilities for
each of the partitions. The graph neural network consists of two modules: an
embedding phase and a partitioning phase. The embedding phase is trained first
by minimizing a loss function inspired by spectral graph theory. The
partitioning module is trained through a loss function that corresponds to the
expected value of the normalized cut. Both parts of the neural network rely on
SAGE convolutional layers and graph coarsening using heavy edge matching. The
multilevel structure of the neural network is inspired by the multigrid
algorithm. Our approach generalizes very well to bigger graphs and has
partition quality comparable to METIS, Scotch and spectral partitioning, with
shorter runtime compared to METIS and spectral partitioning.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks.
We show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data.
We provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network.
arXiv Detail & Related papers (2022-04-20T08:24:43Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Graph Partitioning and Sparse Matrix Ordering using Reinforcement
Learning [0.13999481573773068]
We present a novel method for graph partitioning based on reinforcement learning and graph convolutional neural networks.
The proposed method achieves similar partitioning quality than METIS and Scotch.
The method generalizes from one class of graphs to another, and works well on a variety of graphs from the SuiteSparse sparse matrix collection.
arXiv Detail & Related papers (2021-04-08T06:54:24Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z) - Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling [31.812988573924674]
In graph neural networks (GNNs), pooling operators compute local summaries of input graphs to capture their global properties.
We propose the Node Decimation Pooling (NDP), a pooling operator for GNNs that generates coarser graphs while preserving the overall graph topology.
NDP is more efficient compared to state-of-the-art graph pooling operators while reaching, at the same time, competitive performance on a significant variety of graph classification tasks.
arXiv Detail & Related papers (2019-10-24T21:42:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.