論文の概要: Self-Supervised Learning for Binary Networks by Joint Classifier
Training
- arxiv url: http://arxiv.org/abs/2110.08851v1
- Date: Sun, 17 Oct 2021 15:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 14:31:26.617951
- Title: Self-Supervised Learning for Binary Networks by Joint Classifier
Training
- Title(参考訳): 連成分類器学習による二元ネットワークの自己教師付き学習
- Authors: Dahyun Kim, Jonghyun Choi
- Abstract要約: 本稿では,バイナリネットワークのための自己教師付き学習手法を提案する。
バイナリネットワークのより良いトレーニングのために,特徴類似性損失,損失項の動的バランススキーム,マルチステージトレーニングの修正を提案する。
実証実験により、BSSLは、下流タスクにおけるバイナリネットワークの自己教師付き学習ベースラインよりも優れ、特定のタスクにおける教師付き事前学習よりも優れています。
- 参考スコア(独自算出の注目度): 11.612308609123566
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the great success of self-supervised learning with large floating
point networks, such networks are not readily deployable to edge devices. To
accelerate deployment of models to edge devices for various downstream tasks by
unsupervised representation learning, we propose a self-supervised learning
method for binary networks. In particular, we propose to use a randomly
initialized classifier attached to a pretrained floating point feature
extractor as targets and jointly train it with a binary network. For better
training of the binary network, we propose a feature similarity loss, a dynamic
balancing scheme of loss terms, and modified multi-stage training. We call our
method as BSSL. Our empirical validations show that BSSL outperforms
self-supervised learning baselines for binary networks in various downstream
tasks and outperforms supervised pretraining in certain tasks.
- Abstract(参考訳): 大きな浮動小数点ネットワークによる自己教師型学習の成功にもかかわらず、そのようなネットワークはエッジデバイスに簡単には展開できない。
下流タスクのエッジデバイスへのモデル展開を,教師なし表現学習により高速化するために,バイナリネットワークのための自己教師付き学習手法を提案する。
特に,事前訓練された浮動小数点特徴抽出器に付加されたランダム初期化分類器を目標とし,バイナリネットワークと共同で訓練する。
バイナリネットワークのトレーニングを改善するために,特徴的類似性損失,損失項の動的バランススキーム,多段階学習の修正を提案する。
私たちのメソッドをBSSLと呼びます。
実証実験により、BSSLは、下流タスクにおけるバイナリネットワークの自己教師付き学習ベースラインよりも優れ、特定のタスクにおける教師付き事前学習よりも優れています。
関連論文リスト
- Co-training $2^L$ Submodels for Visual Recognition [67.02999567435626]
サブモデルコトレーニングは、コトレーニング、自己蒸留、深さに関連する正規化手法である。
サブモデルのコトレーニングは,画像分類やセマンティックセグメンテーションなどの認識タスクのためのバックボーンのトレーニングに有効であることを示す。
論文 参考訳(メタデータ) (2022-12-09T14:38:09Z) - On the Soft-Subnetwork for Few-shot Class Incremental Learning [67.0373924836107]
本稿では,emphSoft-SubNetworks (SoftNet) と呼ばれる数発のクラスインクリメンタルラーニング(FSCIL)手法を提案する。
私たちの目的はセッションの連続を漸進的に学習することであり、各セッションは、以前に学習したセッションの知識を保持しながら、クラス毎にいくつかのトレーニングインスタンスのみを含む。
我々は、ベンチマークデータセットよりも最先端のベースラインのパフォーマンスを超越して、SoftNetが数発のインクリメンタル学習問題に効果的に取り組むことを示す、総合的な実証検証を提供する。
論文 参考訳(メタデータ) (2022-09-15T04:54:02Z) - Learning Modular Structures That Generalize Out-of-Distribution [1.7034813545878589]
本稿では、O.O.D.の一般化手法について述べる。トレーニングを通じて、複数のトレーニング領域にまたがってよく再利用されるネットワークの機能のみをモデルが保持することを奨励する。
本手法は,2つの相補的ニューロンレベル正規化器とネットワーク上の確率的微分可能なバイナリマスクを組み合わせることで,元のネットワークよりも優れたO.O.D.性能を実現するモジュールサブネットワークを抽出する。
論文 参考訳(メタデータ) (2022-08-07T15:54:19Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
ディープニューラルネットワーク(DNN)はノイズラベルを記憶する膨大な能力を持つ。
現在最先端の手法では、損失の少ないサンプルを用いて二重ネットワークを訓練するコトレーニング方式が提案されている。
本稿では,単一のネットワークのみをトレーニングすることで,シンプルで効果的なロバストトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T08:16:31Z) - DSPNet: Towards Slimmable Pretrained Networks based on Discriminative
Self-supervised Learning [43.45674911425684]
我々はDSPNet(Driminative-SSL-based Slimmable Pretrained Networks)を提案する。
DSPNetは一度にトレーニングでき、その後、さまざまなサイズの複数のサブネットワークにスリム化される。
個別に事前学習したネットワークに対して、ImageNet上でのDSPNetの同等または改善性能を示す。
論文 参考訳(メタデータ) (2022-07-13T09:32:54Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
ディープニューラルネットワークが従来の機械学習より優れていることが示されている。
ディープ・ネットワークは一般性に欠けており、異なる分布から引き出された新しい(テスト)セットでは性能が良くない。
論文 参考訳(メタデータ) (2022-06-27T15:46:05Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
トレーニングされたフルネットワークから事前定義された'コア'サブネットワークを分割して,優れたパフォーマンスでニューラルネットワークをトレーニングすることが可能であることを示す。
低ランクコアを用いたトランスフォーマーのトレーニングは,低ランクモデル単独のトレーニングよりも優れた性能を有する低ランクモデルが得られることを示す。
論文 参考訳(メタデータ) (2021-06-16T15:57:51Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Fully Convolutional Networks for Continuous Sign Language Recognition [83.85895472824221]
連続手話認識は、空間次元と時間次元の両方の学習を必要とする困難なタスクである。
本稿では,オンラインSLRのための完全畳み込みネットワーク (FCN) を提案し,弱い注釈付きビデオシーケンスから空間的特徴と時間的特徴を同時に学習する。
論文 参考訳(メタデータ) (2020-07-24T08:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。