Violation of general Bell inequalities by a pure bipartite quantum state
- URL: http://arxiv.org/abs/2110.08859v1
- Date: Sun, 17 Oct 2021 16:06:33 GMT
- Title: Violation of general Bell inequalities by a pure bipartite quantum state
- Authors: Elena R. Loubenets and Min Namkung
- Abstract summary: We derive for a pure bipartite quantum state a new upper bound on its maximal violation of general Bell inequalities.
We show that, for each of these bipartite coherent states, the maximal violation of general Bell inequalities cannot exceed the value $3$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present article, based on the formalism introduced in [Loubenets, J.
Math. Phys. 53, 022201 (2012)], we derive for a pure bipartite quantum state a
new upper bound on its maximal violation of general Bell inequalities. This new
bound indicates that, for an infinite dimensional pure bipartite state with a
finite sum of its Schmidt coefficients, violation of any general Bell
inequality is bounded from above by the value independent on a number of
settings and a type of outcomes, continuous or discrete, specific to this Bell
inequality. As an example, we apply our new general results to specifying upper
bounds on the maximal violation of general Bell inequalities by infinite
dimensional bipartite states having the Bell states like forms comprised of two
binary coherent states $|\alpha\rangle ,|-\alpha\rangle$, with $\alpha>0$. We
show that, for each of these bipartite coherent states, the maximal violation
of general Bell inequalities cannot exceed the value $3$ and analyse
numerically the dependence of the derived analytical upper bounds on a
parameter $\alpha>0$.
Related papers
- SOS decomposition for general Bell inequalities in two qubits systems and its application to quantum randomness [7.873333768393128]
Bell non-locality is closely related with device independent quantum randomness.
We present a kind of sum-of-squares (SOS) decomposition for general Bell inequalities in two qubits systems.
arXiv Detail & Related papers (2024-09-13T01:43:32Z) - Entanglement and Bell inequality violation in vector diboson systems produced in decays of spin-0 particles [44.99833362998488]
We discuss conserving and the violation of the entanglementMP inequality in a system of two vector bosons produced in the decay of a spin-0 particle.
As an exemplary process of this kind we use the decay $Hto ZZ$ with anomalous coupling.
arXiv Detail & Related papers (2024-05-26T11:21:06Z) - Optimal Bell inequalities for qubit-qudit systems [44.99833362998488]
We evaluate the maximal Bell violation for a generic qubit-qudit system, obtaining easily computable expressions in arbitrary qudit dimension.
We also give simple lower and upper bounds on that violation and study the possibility of improving the amount of Bell-violation by embedding the qudit Hilbert space in one of larger dimension.
arXiv Detail & Related papers (2024-04-02T16:40:57Z) - Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms [22.554728415868574]
We study the nonlocality robustness of the Greenberger-Horne-Zeilinger (GHZ) state in multipartite Bell scenarios.
We exploit the symmetry of the resulting correlation tensor to drastically accelerate the computation of a Bell inequality.
arXiv Detail & Related papers (2023-10-31T17:43:59Z) - Entanglement and Bell inequalities violation in $H\to ZZ$ with anomalous coupling [44.99833362998488]
We discuss entanglement and violation of Bell-type inequalities for a system of two $Z$ bosons produced in Higgs decays.
We find that a $ZZ$ state is entangled and violates the inequality for all values of the pair (anomalous) coupling constant.
arXiv Detail & Related papers (2023-07-25T13:44:31Z) - Quantifying Bell nonlocality of a pure two-qudit state via its
entanglement [0.0]
We find that entanglement of a pure two-qudit state is necessary and sufficient for its Bell nonlocality.
We rigorously prove the new results on the correlation properties of an arbitrary pure two-qubit state.
arXiv Detail & Related papers (2023-03-29T15:35:19Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - An elegant proof of self-testing for multipartite Bell inequalities [0.0]
This work presents a simple and broadly applicable self-testing argument for N-partite correlation Bell inequalities with two binary outcome observables per party.
To showcase the versatility of our proof technique, we obtain self-testing statements for N party Mermin-Ardehali-Bei-Klyshko (MABK) and Werner-Wolf-Weinfurter-.Zukowski-Brukner (WWW.ZB) family of linear Bell inequalities.
arXiv Detail & Related papers (2022-02-14T18:00:50Z) - Generalized Iterative Formula for Bell Inequalities [12.55611325152539]
This work is inspired via a decomposition of $(n+1)$-partite Bell inequalities into $n$-partite ones.
We present a generalized iterative formula to construct nontrivial $(n+1)$-partite ones from the $n$-partite ones.
arXiv Detail & Related papers (2021-09-12T14:02:13Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Constructing Multipartite Bell inequalities from stabilizers [21.98685929768227]
We propose a systematical framework to construct Bell inequalities from stabilizers maximally violated by general stabilizer states.
We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent.
Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
arXiv Detail & Related papers (2020-02-05T16:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.