Quantifying Bell nonlocality of a pure two-qudit state via its
entanglement
- URL: http://arxiv.org/abs/2303.16794v2
- Date: Wed, 16 Aug 2023 16:04:38 GMT
- Title: Quantifying Bell nonlocality of a pure two-qudit state via its
entanglement
- Authors: Elena R. Loubenets, Sergey Kuznetsov and Louis Hanotel
- Abstract summary: We find that entanglement of a pure two-qudit state is necessary and sufficient for its Bell nonlocality.
We rigorously prove the new results on the correlation properties of an arbitrary pure two-qubit state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the maximal violation of all Bell inequalities by an arbitrary pure
two-qudit state of any dimension, we derive a new lower bound expressed via the
concurrence of this pure state. This new lower bound and the upper bound on the
maximal Bell violation, found in [J. Phys. A: Math. Theor. 55, 285301 (2022)]
and also expressed via the concurrence, analytically quantify Bell nonlocality
of a pure two-qudit state via its entanglement, in particular, prove explicitly
that entanglement of a pure two-qudit state is necessary and sufficient for its
Bell nonlocality. By re-visiting the pure two-qubit case, we also find and
rigorously prove the new results on the correlation properties of an arbitrary
pure two-qubit state.
Related papers
- Optimal Bell inequalities for qubit-qudit systems [44.99833362998488]
We evaluate the maximal Bell violation for a generic qubit-qudit system, obtaining easily computable expressions in arbitrary qudit dimension.
We also give simple lower and upper bounds on that violation and study the possibility of improving the amount of Bell-violation by embedding the qudit Hilbert space in one of larger dimension.
arXiv Detail & Related papers (2024-04-02T16:40:57Z) - Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms [22.554728415868574]
We study the nonlocality robustness of the Greenberger-Horne-Zeilinger (GHZ) state in multipartite Bell scenarios.
We exploit the symmetry of the resulting correlation tensor to drastically accelerate the computation of a Bell inequality.
arXiv Detail & Related papers (2023-10-31T17:43:59Z) - Custom Bell inequalities from formal sums of squares [0.0]
We show how the sum of square property can be enforced for an arbitrary target state by making an appropriate choice of nullifiers.
In most cases we are able to prove that the constructed Bell inequalities achieve self-testing of the target state.
arXiv Detail & Related papers (2023-08-16T18:00:05Z) - The distinctive symmetry of Bell states [65.268245109828]
The Bell's basis is composed of four maximally entangled states of two qubits.
The aim of this paper is to find out the symmetries that determine a Bell state.
arXiv Detail & Related papers (2023-08-14T17:02:41Z) - Device-independent randomness based on a tight upper bound of the
maximal quantum value of chained inequality [11.658472781897123]
We derive the tight upper bound of the maximum quantum value for chained Bell inequality with arbitrary number of measurements.
Based on the tight upper bound we present the lower bounds on the device independent randomness with respect to the Werner states.
arXiv Detail & Related papers (2023-05-23T14:10:03Z) - Bell inequality violations with random mutually unbiased bases [0.0]
We investigate the problem of exhibiting Bell nonlocality for a two-qudit entangled pure state using a randomly chosen set of mutually unbiased bases.
We find that even if we employ only two-setting Bell inequalities, we find a significant chance of obtaining a Bell violation if the two parties are individually allowed to measure a sufficient number of MUBs.
arXiv Detail & Related papers (2022-05-09T04:51:30Z) - An elegant proof of self-testing for multipartite Bell inequalities [0.0]
This work presents a simple and broadly applicable self-testing argument for N-partite correlation Bell inequalities with two binary outcome observables per party.
To showcase the versatility of our proof technique, we obtain self-testing statements for N party Mermin-Ardehali-Bei-Klyshko (MABK) and Werner-Wolf-Weinfurter-.Zukowski-Brukner (WWW.ZB) family of linear Bell inequalities.
arXiv Detail & Related papers (2022-02-14T18:00:50Z) - Violation of general Bell inequalities by a pure bipartite quantum state [0.0]
We derive for a pure bipartite quantum state a new upper bound on its maximal violation of general Bell inequalities.
We show that, for each of these bipartite coherent states, the maximal violation of general Bell inequalities cannot exceed the value $3$.
arXiv Detail & Related papers (2021-10-17T16:06:33Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Constructing Multipartite Bell inequalities from stabilizers [21.98685929768227]
We propose a systematical framework to construct Bell inequalities from stabilizers maximally violated by general stabilizer states.
We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent.
Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
arXiv Detail & Related papers (2020-02-05T16:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.