Patch-Based Deep Autoencoder for Point Cloud Geometry Compression
- URL: http://arxiv.org/abs/2110.09109v1
- Date: Mon, 18 Oct 2021 08:59:57 GMT
- Title: Patch-Based Deep Autoencoder for Point Cloud Geometry Compression
- Authors: Kang You, Pan Gao
- Abstract summary: We propose a patch-based compression process using deep learning.
We divide the point cloud into patches and compress each patch independently.
In the decoding process, we finally assemble the decompressed patches into a complete point cloud.
- Score: 8.44208490359453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing 3D application makes the point cloud compression
unprecedentedly important and needed. In this paper, we propose a patch-based
compression process using deep learning, focusing on the lossy point cloud
geometry compression. Unlike existing point cloud compression networks, which
apply feature extraction and reconstruction on the entire point cloud, we
divide the point cloud into patches and compress each patch independently. In
the decoding process, we finally assemble the decompressed patches into a
complete point cloud. In addition, we train our network by a patch-to-patch
criterion, i.e., use the local reconstruction loss for optimization, to
approximate the global reconstruction optimality. Our method outperforms the
state-of-the-art in terms of rate-distortion performance, especially at low
bitrates. Moreover, the compression process we proposed can guarantee to
generate the same number of points as the input. The network model of this
method can be easily applied to other point cloud reconstruction problems, such
as upsampling.
Related papers
- Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - Lightweight super resolution network for point cloud geometry
compression [34.42460388539782]
We present an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network.
The proposed method involves decomposing a point cloud into a base point cloud and the patterns for reconstructing the original point cloud.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.
arXiv Detail & Related papers (2023-11-02T03:34:51Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
We leverage the human geometric prior in geometry redundancy removal of point clouds.
We can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations.
The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods.
arXiv Detail & Related papers (2023-05-02T10:35:20Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
We propose a graph-based quality enhancement network (GQE-Net) to reduce color distortion in point clouds.
GQE-Net uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently.
Experimental results show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-24T02:33:45Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - IPDAE: Improved Patch-Based Deep Autoencoder for Lossy Point Cloud
Geometry Compression [11.410441760314564]
We propose a set of significant improvements to patch-based point cloud compression.
Experiments show that the improved patch-based autoencoder outperforms the state-of-the-art in terms of rate-distortion performance.
arXiv Detail & Related papers (2022-08-04T08:12:35Z) - SoftPool++: An Encoder-Decoder Network for Point Cloud Completion [93.54286830844134]
We propose a novel convolutional operator for the task of point cloud completion.
The proposed operator does not require any max-pooling or voxelization operation.
We show that our approach achieves state-of-the-art performance in shape completion at low and high resolutions.
arXiv Detail & Related papers (2022-05-08T15:31:36Z) - Density-preserving Deep Point Cloud Compression [72.0703956923403]
We propose a novel deep point cloud compression method that preserves local density information.
Our method works in an auto-encoder fashion: the encoder downsamples the points and learns point-wise features, while the decoder upsamples the points using these features.
arXiv Detail & Related papers (2022-04-27T03:42:15Z) - Variable Rate Compression for Raw 3D Point Clouds [5.107705550575662]
We propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data.
Our network is capable of explicitly processing point clouds and generating a compressed description.
arXiv Detail & Related papers (2022-02-28T15:15:39Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.