論文の概要: Analyzing Wikipedia Membership Dataset and PredictingUnconnected Nodes
in the Signed Networks
- arxiv url: http://arxiv.org/abs/2110.09111v1
- Date: Mon, 18 Oct 2021 09:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-20 03:34:30.422419
- Title: Analyzing Wikipedia Membership Dataset and PredictingUnconnected Nodes
in the Signed Networks
- Title(参考訳): 署名ネットワークにおけるwikipediaメンバーシップデータセットの解析と未接続ノードの予測
- Authors: Zhihao Wu, Taoran Li, Ray Roman
- Abstract要約: 本研究では、Precison-Recall曲線とROCの下の領域を用いて、ソーシャルネットワーク内の2人の非接続者間の関係を予測する方法について検討する。
ソーシャル・ネットワークを署名グラフとしてモデル化し、トライadicモデル、Latent Informationモデル、Sentimentモデルを比較し、ピア・ピア間の相互作用を予測する。
- 参考スコア(独自算出の注目度): 0.666659730119789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the age of digital interaction, person-to-person relationships existing on
social media may be different from the very same interactions that exist
offline. Examining potential or spurious relationships between members in a
social network is a fertile area of research for computer scientists -- here we
examine how relationships can be predicted between two unconnected people in a
social network by using area under Precison-Recall curve and ROC. Modeling the
social network as a signed graph, we compare Triadic model,Latent Information
model and Sentiment model and use them to predict peer to peer interactions,
first using a plain signed network, and second using a signed network with
comments as context. We see that our models are much better than random model
and could complement each other in different cases.
- Abstract(参考訳): デジタルインタラクションの時代において、ソーシャルメディアに存在する対人関係は、オフラインに存在する全く同じ相互作用とは異なるかもしれない。
ここでは、Precison-Recall曲線とROCの下の領域を用いて、ソーシャルネットワーク内の2人の未接続の人々間の関係を予測する方法について検討する。
ソーシャル・ネットワークをサイン付きグラフとしてモデル化し、三進モデル、相対情報モデル、感情モデルを比較し、それらを用いてピアとピアの相互作用を予測する。
我々のモデルはランダムモデルよりもはるかに優れており、異なるケースで相互に補完することができる。
関連論文リスト
- Digital cloning of online social networks for language-sensitive
agent-based modeling of misinformation spread [0.0]
オンラインソーシャルネットワーク内で拡散する誤情報を研究するためのシミュレーションフレームワークを開発する。
我々は、ソーシャルメディア履歴を1万人以上のユーザー向けにダウンロードすることで、既知の偽情報共有ネットワークの「デジタルクローン」を作成する。
論文 参考訳(メタデータ) (2024-01-23T06:02:03Z) - Improving (Dis)agreement Detection with Inductive Social Relation
Information From Comment-Reply Interactions [49.305189190372765]
社会関係情報は、テキスト情報以外の(認識の)タスクにおいて補助的な役割を果たすことができる。
本稿では,このような関係情報を(離散化)データから帰納的社会関係グラフに抽出する手法を提案する。
社会関係は,特に長時間のコメント-返信ペアにおいて,(不一致)認識モデルの性能を高めることができる。
論文 参考訳(メタデータ) (2023-02-08T09:09:47Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
本稿では,データマイニング技術と社会学的行動基準のさらなる融合を支援するための基本的な方法論を提案する。
まず,効率的なハイパーグラフ認識と高速グラフ構築フレームワークを提案する。
第2に,ユーザからユーザへのソーシャルインフルエンスを学習するためのハイパーグラフベースニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-12-22T01:20:29Z) - Reconstructing signed relations from interaction data [0.0]
その重要性にもかかわらず、署名された関係に関するデータはまれであり、調査を通じて一般的に収集される。
本稿では,このようなデータを用いて,その基礎となる署名関係を抽出する方法を示す。
論文 参考訳(メタデータ) (2022-09-07T15:23:51Z) - A Machine Learning Approach to Predicting Continuous Tie Strengths [0.4014524824655105]
人々の関係は常に進化し、対人行動を変え、社会集団を定義する。
ソーシャルネットワーク内のノード間の関係は、しばしば調査によって実証的に評価される結合力によって表される。
時間とともに進化する関係の連続的な近似を可能にするシステムを提案する。
論文 参考訳(メタデータ) (2021-01-23T05:01:05Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
ソーシャルネットワークにおけるサイン付きリンク予測は、ユーザ(すなわちノード)間の基盤となる関係(リンク)を明らかにすることを目的としている
我々は Signed Infomax Hyperbolic Graph (textbfSIHG) と呼ばれる統一されたフレームワークを開発する。
高次ユーザ関係と複雑な階層をモデル化するために、ノードの埋め込みを投影し、より低歪みの双曲空間で測定する。
論文 参考訳(メタデータ) (2020-11-25T05:09:03Z) - Predicting Relationship Labels and Individual Personality Traits from
Telecommunication History in Social Networks using Hawkes Processes [5.668126716715423]
携帯電話には豊富な個人情報が含まれているので、安全を保とうとしています。
我々は、匿名のコミュニケーショントレースから、個人の心理的プロファイルとその仲間との関係を予測できるという大規模な証拠を提供する。
論文 参考訳(メタデータ) (2020-09-04T07:24:49Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
ソーシャルレコメンデーションは、ユーザの未知の嗜好を予測するために、ユーザ間のソーシャルコネクションを活用するために現れている。
ソーシャルレコメンデーションのための神経影響拡散ネットワーク(DiffNet)の予備研究を提案する(Diffnet)。
本稿では,Diffnetの改良アルゴリズムであるDiffNet++を提案する。
論文 参考訳(メタデータ) (2020-01-15T08:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。