論文の概要: CT-SGAN: Computed Tomography Synthesis GAN
- arxiv url: http://arxiv.org/abs/2110.09288v1
- Date: Thu, 14 Oct 2021 22:20:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 20:11:23.563885
- Title: CT-SGAN: Computed Tomography Synthesis GAN
- Title(参考訳): CT-SGAN:CTトモグラフィ合成ガン
- Authors: Ahmad Pesaranghader, Yiping Wang, and Mohammad Havaei
- Abstract要約: 胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 4.765541373485143
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diversity in data is critical for the successful training of deep learning
models. Leveraged by a recurrent generative adversarial network, we propose the
CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes ($\geq
224\times224\times224$) when trained on a small dataset of chest CT-scans.
CT-SGAN offers an attractive solution to two major challenges facing machine
learning in medical imaging: a small number of given i.i.d. training data, and
the restrictions around the sharing of patient data preventing to rapidly
obtain larger and more diverse datasets. We evaluate the fidelity of the
generated images qualitatively and quantitatively using various metrics
including Fr\'echet Inception Distance and Inception Score. We further show
that CT-SGAN can significantly improve lung nodule detection accuracy by
pre-training a classifier on a vast amount of synthetic data.
- Abstract(参考訳): 深層学習モデルのトレーニングの成功には、データの多様性が不可欠だ。
胸部CTスキャンの小さなデータセットを用いて,大規模3次元合成CTスキャンボリューム(\geq 224\times 224\times 224$)を生成するCT-SGANモデルを提案する。
ct-sganは、医療画像における機械学習に直面する2つの大きな課題に対して魅力的な解決策を提供している: 少数の与えられたi.i.d.トレーニングデータと、より大規模で多様なデータセットを迅速に取得することを防ぐ患者データの共有に関する制限である。
Fr'echet Inception Distance や Inception Score などの様々な指標を用いて,生成した画像の忠実度を質的,定量的に評価した。
さらに,CT-SGANは,大量の合成データに基づいて分類器を事前訓練することにより,肺結節検出精度を著しく向上できることを示した。
関連論文リスト
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
本稿では、畳み込みニューラルネットワークと視覚変換器の長所を利用する革新的なモデルを提案する。
ビデオ中の物体検出にインスパイアされた各3次元CT画像をビデオとして扱い、個々のスライスをフレームとして、肺結節をオブジェクトとして扱い、時系列アプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-10-05T07:48:55Z) - Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation [4.43162303545687]
深層学習に基づく生成モデルでは、低分解能CT画像を長い取得時間なしで高分解能CT画像に変換する可能性があり、薄スライスCT画像では放射線暴露が増大する。
これらの超解法(SR)モデルの適切なトレーニングデータを取得することは困難である。
これまでのSR研究では、薄いスライスCT画像から厚いスライスCT画像をシミュレートして、トレーニングペアを作成していた。
我々は,薄スライスCT画像から厚いCT画像を生成するための単純かつ現実的な手法を導入し,SRアルゴリズムのトレーニングペアの作成を容易にする。
論文 参考訳(メタデータ) (2023-07-02T11:09:08Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Image Synthesis for Data Augmentation in Medical CT using Deep
Reinforcement Learning [31.677682150726383]
本手法は, 新規かつ解剖学的に高精度な高解像度CT画像の大量かつ多種多様な生成に有効であることを示す。
私たちのアプローチは、多くの研究者が利用可能な画像データの少ない量を考えると望ましい小さな画像データセットでも機能するように特別に設計されています。
論文 参考訳(メタデータ) (2021-03-18T19:47:11Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。