SPAP: Simultaneous Demand Prediction and Planning for Electric Vehicle
Chargers in a New City
- URL: http://arxiv.org/abs/2110.09452v1
- Date: Mon, 18 Oct 2021 16:42:42 GMT
- Title: SPAP: Simultaneous Demand Prediction and Planning for Electric Vehicle
Chargers in a New City
- Authors: Yizong Wang, Dong Zhao, Yajie Ren, Desheng Zhang, and Huadong Ma
- Abstract summary: It is difficult to predict charging demands before the actual deployment of EV chargers for lack of operational data.
We propose Simultaneous Demand Prediction And Planning (SPAP) to solve this problem.
SPAP improves at most 72.5% revenue compared with the real-world charger deployment.
- Score: 19.95343057352923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a new city that is committed to promoting Electric Vehicles (EVs), it is
significant to plan the public charging infrastructure where charging demands
are high. However, it is difficult to predict charging demands before the
actual deployment of EV chargers for lack of operational data, resulting in a
deadlock. A direct idea is to leverage the urban transfer learning paradigm to
learn the knowledge from a source city, then exploit it to predict charging
demands, and meanwhile determine locations and amounts of slow/fast chargers
for charging stations in the target city. However, the demand prediction and
charger planning depend on each other, and it is required to re-train the
prediction model to eliminate the negative transfer between cities for each
varied charger plan, leading to the unacceptable time complexity. To this end,
we propose the concept and an effective solution of Simultaneous Demand
Prediction And Planning (SPAP): discriminative features are extracted from
multi-source data, and fed into an Attention-based Spatial-Temporal City Domain
Adaptation Network (AST-CDAN) for cross-city demand prediction; a novel
Transfer Iterative Optimization (TIO) algorithm is designed for charger
planning by iteratively utilizing AST-CDAN and a charger plan fine-tuning
algorithm. Extensive experiments on real-world datasets collected from three
cities in China validate the effectiveness and efficiency of SPAP. Specially,
SPAP improves at most 72.5% revenue compared with the real-world charger
deployment.
Related papers
- Location based Probabilistic Load Forecasting of EV Charging Sites: Deep Transfer Learning with Multi-Quantile Temporal Convolutional Network [1.49199020343864]
This article presents a location-based load forecasting of EV charging sites using a deep Multi-Quantile Temporal Convolutional Network (MQ-TCN)
We conducted experiments on data from four charging sites, namely, Caltech, JPL, Office-1, and NREL, which have diverse EV user types.
Our proposed deep MQ-TCN model exhibited a remarkable 28.93% improvement over the XGBoost model for a day-ahead load forecasting at the JPL charging site.
arXiv Detail & Related papers (2024-09-18T10:34:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - A physics-informed and attention-based graph learning approach for
regional electric vehicle charging demand prediction [7.441576351434805]
This paper proposes a novel approach that enables the integration of graph and temporal attention mechanisms for feature extraction.
Evaluation results on a dataset of 18,013 EV charging piles in Shenzhen, China show that the proposed approach, named PAG, can achieve state-of-the-art forecasting performance.
arXiv Detail & Related papers (2023-09-11T06:31:45Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Reinforcement Learning-based Placement of Charging Stations in Urban
Road Networks [0.0]
We design a novel Deep Reinforcement Learning approach to solve the charging station placement problem (PCRL)
Compared to the existing infrastructure, we can reduce the waiting time by up to 97% and increase the benefit up to 497%.
arXiv Detail & Related papers (2022-06-13T10:03:32Z) - Estimation of Electric Vehicle Public Charging Demand using Cellphone
Data and Points of Interest-based Segmentation [0.0]
The race for road electrification has started, and convincing drivers to switch from fuel-powered vehicles to electric vehicles requires robust Electric Vehicle (EV) charging infrastructure.
This article proposes an innovative EV charging demand estimation and segmentation method.
arXiv Detail & Related papers (2022-06-02T09:54:11Z) - Optimal Placement of Public Electric Vehicle Charging Stations Using
Deep Reinforcement Learning [0.0]
A novel application of Reinforcement Learning (RL) is able to find optimal locations for new charging stations.
The proposed RL framework can be refined and applied to cities across the world to optimize charging station placement.
arXiv Detail & Related papers (2021-08-17T17:25:30Z) - Intelligent Electric Vehicle Charging Recommendation Based on
Multi-Agent Reinforcement Learning [42.31586065609373]
Electric Vehicle (EV) has become a choice in the modern transportation system due to its environmental and energy sustainability.
In many cities, EV drivers often fail to find the proper spots for charging, because of the limited charging infrastructures and the largely unbalanced charging demands.
We propose a framework, named Multi-Agent Spatiotemporal-temporal ment Learning (MasterReinforce), for intelligently recommending public charging stations.
arXiv Detail & Related papers (2021-02-15T06:23:59Z) - Deep Reinforcement Learning with Spatio-temporal Traffic Forecasting for
Data-Driven Base Station Sleep Control [39.31623488192675]
To meet the ever increasing mobile traffic demand in 5G era, base stations (BSs) have been densely deployed in radio access networks (RANs) to increase the network coverage and capacity.
As the high density of BSs is designed to accommodate peak traffic, it would consume an unnecessarily large amount of energy if BSs are on during off-peak time.
To save the energy consumption of cellular networks, an effective way is to deactivate some idle base stations that do not serve any traffic demand.
In this paper, we develop a traffic-aware dynamic BS sleep control framework, named DeepBSC
arXiv Detail & Related papers (2021-01-21T01:39:42Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.