Optimal Placement of Public Electric Vehicle Charging Stations Using
Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2108.07772v1
- Date: Tue, 17 Aug 2021 17:25:30 GMT
- Title: Optimal Placement of Public Electric Vehicle Charging Stations Using
Deep Reinforcement Learning
- Authors: Aidan Petratos, Allen Ting, Shankar Padmanabhan, Kristina Zhou, Dylan
Hageman, Jesse R. Pisel, Michael J. Pyrcz
- Abstract summary: A novel application of Reinforcement Learning (RL) is able to find optimal locations for new charging stations.
The proposed RL framework can be refined and applied to cities across the world to optimize charging station placement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The placement of charging stations in areas with developing charging
infrastructure is a critical component of the future success of electric
vehicles (EVs). In Albany County in New York, the expected rise in the EV
population requires additional charging stations to maintain a sufficient level
of efficiency across the charging infrastructure. A novel application of
Reinforcement Learning (RL) is able to find optimal locations for new charging
stations given the predicted charging demand and current charging locations.
The most important factors that influence charging demand prediction include
the conterminous traffic density, EV registrations, and proximity to certain
types of public buildings. The proposed RL framework can be refined and applied
to cities across the world to optimize charging station placement.
Related papers
- Maximum flow-based formulation for the optimal location of electric
vehicle charging stations [2.340830801548167]
We propose a model for the assignment of EV charging demand to stations, framing it as a maximum flow problem.
We showcase our methodology for the city of Montreal, demonstrating the scalability of our approach to handle real-world scenarios.
arXiv Detail & Related papers (2023-12-10T19:49:09Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - Reinforcement Learning-based Placement of Charging Stations in Urban
Road Networks [0.0]
We design a novel Deep Reinforcement Learning approach to solve the charging station placement problem (PCRL)
Compared to the existing infrastructure, we can reduce the waiting time by up to 97% and increase the benefit up to 497%.
arXiv Detail & Related papers (2022-06-13T10:03:32Z) - Estimation of Electric Vehicle Public Charging Demand using Cellphone
Data and Points of Interest-based Segmentation [0.0]
The race for road electrification has started, and convincing drivers to switch from fuel-powered vehicles to electric vehicles requires robust Electric Vehicle (EV) charging infrastructure.
This article proposes an innovative EV charging demand estimation and segmentation method.
arXiv Detail & Related papers (2022-06-02T09:54:11Z) - Web Mining to Inform Locations of Charging Stations for Electric
Vehicles [18.25327009053813]
Electric vehicle (EV) owners have a certain limited willingness to walk between charging stations and points-of-interest (POIs)
We propose the use of web mining: we characterize the influence of different POIs from OpenStreetMap on the utilization of charging stations.
We present a tailored interpretable model that takes into account the full spatial distributions of both the POIs and the charging stations.
arXiv Detail & Related papers (2022-03-10T17:00:18Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - SPAP: Simultaneous Demand Prediction and Planning for Electric Vehicle
Chargers in a New City [19.95343057352923]
It is difficult to predict charging demands before the actual deployment of EV chargers for lack of operational data.
We propose Simultaneous Demand Prediction And Planning (SPAP) to solve this problem.
SPAP improves at most 72.5% revenue compared with the real-world charger deployment.
arXiv Detail & Related papers (2021-10-18T16:42:42Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Intelligent Electric Vehicle Charging Recommendation Based on
Multi-Agent Reinforcement Learning [42.31586065609373]
Electric Vehicle (EV) has become a choice in the modern transportation system due to its environmental and energy sustainability.
In many cities, EV drivers often fail to find the proper spots for charging, because of the limited charging infrastructures and the largely unbalanced charging demands.
We propose a framework, named Multi-Agent Spatiotemporal-temporal ment Learning (MasterReinforce), for intelligently recommending public charging stations.
arXiv Detail & Related papers (2021-02-15T06:23:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.