Dynamical scaling of correlations generated by short- and long-range
dissipation
- URL: http://arxiv.org/abs/2110.09547v3
- Date: Mon, 23 May 2022 20:52:33 GMT
- Title: Dynamical scaling of correlations generated by short- and long-range
dissipation
- Authors: Kushal Seetharam, Alessio Lerose, Rosario Fazio, Jamir Marino
- Abstract summary: We consider systems initially in an unrelated state, and find that correlations and contract in a novel pattern intimately related to both the dissipative nature of the dynamical channel and widen its profile.
Our work aims at extending the study of correlation dynamics to purely dissipative quantum simulators and compare them with the established paradigm of spreading in hamiltonian systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the spatio-temporal spreading of correlations in an ensemble of
spins due to dissipation characterized by short- and long-range spatial
profiles. We consider systems initially in an uncorrelated state, and find that
correlations widen and contract in a novel pattern intimately related to both
the dissipative nature of the dynamical channel and its spatial profile.
Additionally, we make a methodological contribution by generalizing
non-equilibrium spin-wave theory to the case of dissipative systems and derive
equations of motion for any translationally invariant spin chain whose dynamics
can be described by a combination of Hamiltonian interactions and dissipative
Lindblad channels. Our work aims at extending the study of correlation dynamics
to purely dissipative quantum simulators and compare them with the established
paradigm of correlations spreading in hamiltonian systems.
Related papers
- Influence of disordered and anisotropic interactions on relaxation dynamics and propagation of correlations in tweezer arrays of Rydberg dipoles [0.0]
We investigate the out-of-equilibrium dynamics of irregular one- and two-dimensional arrays of Rydberg dipoles featuring spatially anisotropic interactions.
We find a regime of slow relaxation characterized by a sub-ballistic propagation of correlations that remained confined to short distances even at long times.
Our findings can be relevant for a wide variety of quantum science platforms naturally featuring disordered dipolar interactions.
arXiv Detail & Related papers (2024-08-14T16:13:59Z) - Fate of entanglement in quadratic Markovian dissipative systems [0.0]
We develop a description for the driven-dissipative dynamics of the entanglement negativity.
We focus on quantum quenches in fermionic and bosonic systems subject to linear dissipation.
arXiv Detail & Related papers (2024-06-21T17:41:39Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Kadanoff-Baym equations for interacting systems with dissipative
Lindbladian dynamics [0.0]
We present a second-quantization approach to the em dissipative NEGF theory.
Generalizing diagrammatic perturbation theory for many-body Lindblad operators, the formalism enables correlated and dissipative real-time simulations.
arXiv Detail & Related papers (2024-02-16T16:51:32Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Emergent fractal phase in energy stratified random models [0.0]
We study the effects of partial correlations in kinetic hopping terms of long-range random matrix models on their localization properties.
We show that any deviation from the completely correlated case leads to the emergent non-ergodic delocalization in the system.
arXiv Detail & Related papers (2021-06-07T18:00:01Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - The entanglement membrane in chaotic many-body systems [0.0]
In certain analytically-tractable quantum chaotic systems, the calculation of out-of-time-order correlation functions, entanglement entropies after a quench, and other related dynamical observables, reduces to an effective theory of an entanglement membrane'' in spacetime.
We show here how to make sense of this membrane in more realistic models, which do not involve an average over random unitaries.
arXiv Detail & Related papers (2019-12-27T19:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.