Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks
- URL: http://arxiv.org/abs/2110.09548v4
- Date: Tue, 26 Sep 2023 01:33:50 GMT
- Title: Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks
- Authors: Tolga Ergen, Mert Pilanci
- Abstract summary: We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
- Score: 75.33431791218302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the fundamental principles behind the success of deep neural
networks is one of the most important open questions in the current literature.
To this end, we study the training problem of deep neural networks and
introduce an analytic approach to unveil hidden convexity in the optimization
landscape. We consider a deep parallel ReLU network architecture, which also
includes standard deep networks and ResNets as its special cases. We then show
that pathwise regularized training problems can be represented as an exact
convex optimization problem. We further prove that the equivalent convex
problem is regularized via a group sparsity inducing norm. Thus, a path
regularized parallel ReLU network can be viewed as a parsimonious convex model
in high dimensions. More importantly, since the original training problem may
not be trainable in polynomial-time, we propose an approximate algorithm with a
fully polynomial-time complexity in all data dimensions. Then, we prove strong
global optimality guarantees for this algorithm. We also provide experiments
corroborating our theory.
Related papers
- Does a sparse ReLU network training problem always admit an optimum? [0.0]
We show that the existence of an optimal solution is not always guaranteed, especially in the context of sparse ReLU neural networks.
In particular, we first show that optimization problems involving deep networks with certain sparsity patterns do not always have optimal parameters.
arXiv Detail & Related papers (2023-06-05T08:01:50Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
We develop an analytical framework to characterize the set of optimal ReLU networks.
We establish conditions for the neuralization of ReLU networks to be continuous, and develop sensitivity results for ReLU networks.
arXiv Detail & Related papers (2023-05-31T18:48:16Z) - Learning Non-Vacuous Generalization Bounds from Optimization [8.294831479902658]
We present a simple yet non-vacuous generalization bound from the optimization perspective.
We achieve this goal by leveraging that the hypothesis set accessed by gradient algorithms is essentially fractal-like.
Numerical studies demonstrate that our approach is able to yield plausible generalization guarantees for modern neural networks.
arXiv Detail & Related papers (2022-06-09T08:59:46Z) - Imbedding Deep Neural Networks [0.0]
Continuous depth neural networks, such as Neural ODEs, have refashioned the understanding of residual neural networks in terms of non-linear vector-valued optimal control problems.
We propose a new approach which explicates the network's depth' as a fundamental variable, thus reducing the problem to a system of forward-facing initial value problems.
arXiv Detail & Related papers (2022-01-31T22:00:41Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Global Optimality Beyond Two Layers: Training Deep ReLU Networks via
Convex Programs [39.799125462526234]
We develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization.
We numerically validate our theoretical results via experiments involving both synthetic and real datasets.
arXiv Detail & Related papers (2021-10-11T18:00:30Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints.
Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces.
arXiv Detail & Related papers (2020-06-10T15:38:30Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.