A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks
- URL: http://arxiv.org/abs/2101.04243v2
- Date: Mon, 8 Feb 2021 11:38:39 GMT
- Title: A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks
- Authors: Asaf Noy, Yi Xu, Yonathan Aflalo, Lihi Zelnik-Manor, Rong Jin
- Abstract summary: We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
- Score: 56.084798078072396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks' remarkable ability to correctly fit training data when
optimized by gradient-based algorithms is yet to be fully understood. Recent
theoretical results explain the convergence for ReLU networks that are wider
than those used in practice by orders of magnitude. In this work, we take a
step towards closing the gap between theory and practice by significantly
improving the known theoretical bounds on both the network width and the
convergence time. We show that convergence to a global minimum is guaranteed
for networks with widths quadratic in the sample size and linear in their depth
at a time logarithmic in both. Our analysis and convergence bounds are derived
via the construction of a surrogate network with fixed activation patterns that
can be transformed at any time to an equivalent ReLU network of a reasonable
size. This construction can be viewed as a novel technique to accelerate
training, while its tight finite-width equivalence to Neural Tangent Kernel
(NTK) suggests it can be utilized to study generalization as well.
Related papers
- Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Feature Learning and Generalization in Deep Networks with Orthogonal Weights [1.7956122940209063]
Deep neural networks with numerically weights from independent Gaussian distributions can be tuned to criticality.
These networks still exhibit fluctuations that grow linearly with the depth of the network.
We show analytically that rectangular networks with tanh activations and weights from the ensemble of matrices have corresponding preactivation fluctuations.
arXiv Detail & Related papers (2023-10-11T18:00:02Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - The edge of chaos: quantum field theory and deep neural networks [0.0]
We explicitly construct the quantum field theory corresponding to a general class of deep neural networks.
We compute the loop corrections to the correlation function in a perturbative expansion in the ratio of depth $T$ to width $N$.
Our analysis provides a first-principles approach to the rapidly emerging NN-QFT correspondence, and opens several interesting avenues to the study of criticality in deep neural networks.
arXiv Detail & Related papers (2021-09-27T18:00:00Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.